Surface characterization of anodized zirconium for biomedical applications

作者: A. Gomez Sanchez , W. Schreiner , G. Duffó , S. Ceré

DOI: 10.1016/J.APSUSC.2011.02.005

关键词: ZirconiumCorrosionBiocompatibilityOsseointegrationSurface modificationAnodizingMaterials scienceMetallurgySimulated body fluidElectrolyteChemical engineering

摘要: Abstract Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence a protective oxide layer that minimizes rate, diminishes amount metallic ions released biological media facilitates osseointegration process. Since implant surface region contact with living tissues, characteristics film are great interest. Surface modification route enhance both biocompatibility permanent materials. Anodizing presented as an interesting process modify metal surfaces reproducibility independence geometry. In work before after anodizing 1 mol/L phosphoric acid solution at fixed potential between 3 30 V, was characterized by means several techniques. It found during anodization grows inhomogeneous coverage on surface, modifying topography. The incorporation P from electrolyte changes chemistry. After 30 days immersion Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present anodized zirconium.

参考文章(57)
Yoshimitsu Okazaki, Emiko Gotoh, Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. ,vol. 26, pp. 11- 21 ,(2005) , 10.1016/J.BIOMATERIALS.2004.02.005
Bangcheng Yang, Masaiki Uchida, Hyun-Min Kim, Xingdong Zhang, Tadashi Kokubo, Preparation of bioactive titanium metal via anodic oxidation treatment Biomaterials. ,vol. 25, pp. 1003- 1010 ,(2004) , 10.1016/S0142-9612(03)00626-4
T. Hanawa, Metal ion release from metal implants Materials Science and Engineering: C. ,vol. 24, pp. 745- 752 ,(2004) , 10.1016/J.MSEC.2004.08.018
M. Karthega, S. Nagarajan, N. Rajendran, In vitro studies of hydrogen peroxide treated titanium for biomedical applications Electrochimica Acta. ,vol. 55, pp. 2201- 2209 ,(2010) , 10.1016/J.ELECTACTA.2009.11.057
J.-L. Delplancke, M. Degrez, A. Fontana, R. Winand, Self-colour anodizing of titanium Surface Technology. ,vol. 16, pp. 153- 162 ,(1982) , 10.1016/0376-4583(82)90033-4
Gianluca Giavaresi, Milena Fini, Alberto Cigada, Roberto Chiesa, Gianni Rondelli, Lia Rimondini, Paola Torricelli, Nicolò Nicoli Aldini, Roberto Giardino, Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials. ,vol. 24, pp. 1583- 1594 ,(2003) , 10.1016/S0142-9612(02)00548-3
L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, C. Martelet, Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour Materials Science and Engineering: C. ,vol. 23, pp. 551- 560 ,(2003) , 10.1016/S0928-4931(03)00033-X
J.S. Llewelyn Leach, B.R. Pearson, The conditions for incorporation of electrolyte ions into anodic oxides Electrochimica Acta. ,vol. 29, pp. 1263- 1270 ,(1984) , 10.1016/0013-4686(84)87189-3
Florence Barrere, Margot M.E. Snel, Clemens A. van Blitterswijk, Klaas de Groot, Pierre Layrolle, Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants Biomaterials. ,vol. 25, pp. 2901- 2910 ,(2004) , 10.1016/J.BIOMATERIALS.2003.09.063
A Pérez del Pino, J.M Fernández-Pradas, P Serra, J.L Morenza, Coloring of titanium through laser oxidation: comparative study with anodizing Surface & Coatings Technology. ,vol. 187, pp. 106- 112 ,(2004) , 10.1016/J.SURFCOAT.2004.02.001