Enzyme-substrate matching in biocatalysis: in silico studies to predict substrate preference of ten putative ene-reductases from Mucor circinelloides MUT44

作者: Gianluca Catucci , Alice Romagnolo , Federica Spina , Giovanna Cristina Varese , Gianfranco Gilardi

DOI: 10.1016/J.MOLCATB.2016.06.008

关键词: Protein Data Bank (RCSB PDB)In silicoCofactorBiocatalysisChemistryDocking (molecular)Active siteBiochemistryTIM barrelMucor circinelloides

摘要: Ene-reductases are flavoproteins able to catalyse the reduction of carbon-carbon double bonds with many potential applications in biocatalysis. The fungus Mucor circinelloides MUT44 has high ene-reductase activity when grown presence substrates carrying different electron-withdrawing groups. Genome sequencing revealed ten putative genes coding for ene-reductases that can be potentially exploited biocatalytic purposes. To this end, availability a method predict which isoform binds and turns over specific substrate would help choose best catalyst desired bioconversion. Here, homology models enzymes first generated, validated show proteins share typical TIM barrel fold conserved β-hairpin cap on one side non-conserved subdomain capping other side, where FMN cofactor is accommodated. The active site terms both volume charge distribution whereas residues responsible recognition catalysis generally conserved. Docking cyclohexenone into shows binding almost superimposable found pentaerythritol tetranitrate reductase complex (PDB ID 1GVQ) isoforms 1, 2, 6 10. The data demonstrate silico predictions used new fungal substrate-enzyme matching selection most suitable biotransformation.

参考文章(52)
Narayanan Eswar, David Eramian, Ben Webb, Min-Yi Shen, Andrej Sali, Protein structure modeling with MODELLER. Methods of Molecular Biology. ,vol. 426, pp. 145- 159 ,(2008) , 10.1007/978-1-60327-058-8_8
Marc R. Wilkins, Elisabeth Gasteiger, Amos Bairoch, Jean-Charles Sanchez, Keith L. Williams, Ron D. Appel, Denis F. Hochstrasser, Protein identification and analysis tools in the ExPASy server Methods of Molecular Biology. ,vol. 112, pp. 531- 552 ,(1999) , 10.1385/1-59259-584-7:531
Richard E. Williams, Neil C. Bruce, 'New uses for an Old Enzyme'--the Old Yellow Enzyme family of flavoenzymes. Microbiology. ,vol. 148, pp. 1607- 1614 ,(2002) , 10.1099/00221287-148-6-1607
Diederik J. Opperman, Bryan T. Sewell, Derek Litthauer, Mikhail N. Isupov, Jennifer A. Littlechild, Esta van Heerden, Crystal structure of a thermostable Old Yellow Enzyme from Thermus scotoductus SA-01 Biochemical and Biophysical Research Communications. ,vol. 393, pp. 426- 431 ,(2010) , 10.1016/J.BBRC.2010.02.011
Christoph K. Winkler, Gábor Tasnádi, Dorina Clay, Mélanie Hall, Kurt Faber, Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. Journal of Biotechnology. ,vol. 162, pp. 381- 389 ,(2012) , 10.1016/J.JBIOTEC.2012.03.023
Constanze Breithaupt, Robert Kurzbauer, Florian Schaller, Annick Stintzi, Andreas Schaller, Robert Huber, Peter Macheroux, Tim Clausen, Structural basis of substrate specificity of plant 12-oxophytodienoate reductases. Journal of Molecular Biology. ,vol. 392, pp. 1266- 1277 ,(2009) , 10.1016/J.JMB.2009.07.087
On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase Philosophical Transactions of the Royal Society B. ,vol. 293, pp. 159- 171 ,(1981) , 10.1098/RSTB.1981.0069
Shadab Nizam, Sandhya Verma, Nilam Nayan Borah, Rajesh Kumar Gazara, Praveen Kumar Verma, Comprehensive genome-wide analysis reveals different classes of enigmatic old yellow enzyme in fungi Scientific Reports. ,vol. 4, pp. 4013- 4013 ,(2015) , 10.1038/SREP04013