A Posteriori Error Estimation in PDE-constrained Optimization with Pointwise Inequality Constraints

作者: Rolf Rannacher , Boris Vexler , Winnifried Wollner

DOI: 10.1007/978-3-0348-0133-1_19

关键词: PointwiseOptimization problemInequalityState variableConstrained optimizationA priori and a posterioriRegularization (mathematics)Mathematical optimizationComputer scienceDiscretization error

摘要: This article summarizes several recent results on goal-oriented error estimation and mesh adaptation for the solution of elliptic PDE-constrained optimization problems with additional inequality constraints. The first part is devoted to control constrained case. Then some emphasis given pointwise constraints state variable its gradient. In last regularization techniques are considered question addressed, how parameter can adaptively be linked discretization error.

参考文章(52)
Wenbin Liu, Adaptive Multi-Meshes in Finite Element Approximation of Optimal Control Providence, RI; American Mathematical Society. ,(2005)
Dietrich Braess, Finite Elements Cambridge University Press. ,(2007) , 10.1017/CBO9780511618635
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Dietrich Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics Computing in Science and Engineering. ,vol. 1, pp. 81- 81 ,(1999) , 10.1109/MCSE.1999.10004
Wenbin Liu, Ningning Yan, A Posteriori Error Estimates for Distributed Convex Optimal Control Problems Advances in Computational Mathematics. ,vol. 15, pp. 285- 309 ,(2001) , 10.1023/A:1014239012739
R. Rannacher, R. Becker, An Optimal Control Approach to A-Posteriori Error Estimation Cambridge University Press. ,(2001)
Karl Kunisch, Günter Leugering, Jürgen Sprekels, Fredi Tröltzsch, Control of coupled partial differential equations Birkhäuser Basel. ,(2007) , 10.1007/978-3-7643-7721-2
P. Hansbo, D. Estep, C. Johnson, K. Eriksson, Computational Differential Equations ,(1996)
Boris Vexler, Adaptive Finite Element Methods for Parameter Identification Problems Contributions in Mathematical and Computational Sciences. pp. 31- 54 ,(2013) , 10.1007/978-3-642-30367-8_2