Advances in Feature Selection with Mutual Information

作者: Michel Verleysen , Fabrice Rossi , Damien François

DOI: 10.1007/978-3-642-01805-3_4

关键词: Multivariate mutual informationFeature selectionMachine learningContext (language use)Relevance (information retrieval)Artificial intelligenceCurse of dimensionalitySmoothingLinear discriminant analysisData miningComputer scienceMutual information

摘要: The selection of features that are relevant for a prediction or classification problem is an important in many domains involving high-dimensional data. Selecting helps fighting the curse dimensionality, improving performances methods, and interpreting application. In nonlinear context, mutual information widely used as relevance criterion sets features. Nevertheless, it suffers from at least three major limitations: estimators depend on smoothing parameters, there no theoretically justified stopping feature greedy procedure, estimation itself dimensionality. This chapter shows how to deal with these problems. two first ones addressed by using resampling techniques provide statistical basis select estimator parameters stop search procedure. third one modifying into measure complementary (and not only informative) hand.

参考文章(13)
David W. Scott, Multivariate Density Estimation Wiley Series in Probability and Statistics. ,(1992) , 10.1002/9780470316849
Catherine Krier, Fabrice Rossi, Damien François, Michel Verleysen, Estimation de redondance pour le clustering de variables spectrales 10th European Symposium on Statistical Methods for the Food Industry (AGROSTAT 2008). ,(2008)
Claus. Borggaard, Hans Henrik. Thodberg, Optimal minimal neural interpretation of spectra Analytical Chemistry. ,vol. 64, pp. 545- 551 ,(1992) , 10.1021/AC00029A018
M. N. Goria, N. N. Leonenko, V. V. Mergel, P. L. Novi Inverardi, A new class of random vector entropy estimators and its applications in testing statistical hypotheses Journal of Nonparametric Statistics. ,vol. 17, pp. 277- 297 ,(2005) , 10.1080/104852504200026815
Alexander Kraskov, Harald Stögbauer, Peter Grassberger, Estimating mutual information. Physical Review E. ,vol. 69, pp. 066138- ,(2004) , 10.1103/PHYSREVE.69.066138
Thomas M. Cover, Joy A. Thomas, Elements of information theory ,(1991)
Catherine Krier, Damien François, Fabrice Rossi, Michel Verleysen, France Chesnay Cedex, Feature clustering and mutual information for the selection of variables in spectral data the european symposium on artificial neural networks. pp. 157- 162 ,(2007)
F. Rossi, A. Lendasse, D. François, V. Wertz, M. Verleysen, Mutual information for the selection of relevant variables in spectrometric nonlinear modelling Chemometrics and Intelligent Laboratory Systems. ,vol. 80, pp. 215- 226 ,(2006) , 10.1016/J.CHEMOLAB.2005.06.010