Variational integrators for electric circuits

作者: Sina Ober-Blöbaum , Molei Tao , Mulin Cheng , Houman Owhadi , Jerrold E. Marsden

DOI: 10.1016/J.JCP.2013.02.006

关键词: ResistorTopologyDegeneracy (mathematics)MathematicsControl theoryVariational integratorEquations of motionVoltageElectric potentialElectronic circuitDiscretization

摘要: In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering dynamics an circuit, one is faced with three special situations: 1. The system involves external (control) forcing through (controlled) voltage sources resistors. 2. constrained via Kirchhoff current (KCL) laws (KVL). 3. Lagrangian degenerate. Based on geometric setting, appropriate formulation presented to model circuit from which equations motion are derived. A time-discrete provides iteration scheme circuit. Dependent discretization, intrinsic degeneracy can be canceled discrete scheme. way, constructed that gains several advantages compared standard integration tools circuits; in particular, comparison BDF methods (which usually method choice circuits) shows even simple LCR circuits, better energy behavior frequency spectrum preservation observed using developed integrator.

参考文章(70)
Michael Ortiz, Jerrold E. Marsden, Adrian Lew, Matthew West, An Overview of Variational Integrators International Center for Numerical Methods in Engineering (CIMNE). ,(2004)
C.W. Rowley, J.E. Marsden, Variational integrators for degenerate Lagrangians, with application to point vortices conference on decision and control. ,vol. 2, pp. 1521- 1527 ,(2002) , 10.1109/CDC.2002.1184735
D. Huybrechs, A. Iserles, S. P. Norsett, From high oscillation to rapid approximation V: the equilateral triangle Ima Journal of Numerical Analysis. ,vol. 31, pp. 755- 785 ,(2011) , 10.1093/IMANUM/DRQ010
Marin Kobilarov, , Jerrold E. Marsden, Gaurav S. Sukhatme, , , Geometric discretization of nonholonomic systems with symmetries Discrete and Continuous Dynamical Systems - Series S. ,vol. 3, pp. 61- 84 ,(2009) , 10.3934/DCDSS.2010.3.61
A. Iserles, S. P. Norsett, From high oscillation to rapid approximation III: multivariate expansions Ima Journal of Numerical Analysis. ,vol. 29, pp. 882- 916 ,(2009) , 10.1093/IMANUM/DRN020
B. García-Archilla, J. M. Sanz-Serna, R. D. Skeel, Long-Time-Step Methods for Oscillatory Differential Equations SIAM Journal on Scientific Computing. ,vol. 20, pp. 930- 963 ,(1999) , 10.1137/S1064827596313851
Marlis Hochbruck, Christian Lubich, A Gautschi-type method for oscillatory second-order differential equations Numerische Mathematik. ,vol. 83, pp. 403- 426 ,(1999) , 10.1007/S002110050456