Robust Silhouette Extraction Technique Using Background Subtraction

作者: Itaru Kitahara , Tomoji Toriyama , Ryuuki Sakamoto , Kiyoshi Kogure , Hansung Kim

DOI:

关键词: PixelArtificial intelligenceComputer visionSegmentationFamily modelShadowGaussianSilhouettePattern recognitionBackground subtractionComputer scienceMoving average

摘要: We propose a robust method to extract silhouettes of foreground objects from color video sequences. To cope with various changes in the background, background is modeled as generalized Gaussian Family distributions and updated by selective running average static pixel observation. All pixels input image are classified into four initial regions using subtraction multiple thresholds, after which shadow eliminated components. The final silhouette extracted refining region morphological processes. have verified that proposed algorithm works very well situations through experiments. Keyword Foreground segmentation, Silhouette extraction, Background subtraction, Generalized model

参考文章(22)
Thanarat Horprasert, David Harwood, Larry S Davis, None, A Robust Background Subtraction and Shadow Detection ,(1999)
Samuel Kotz, Tomasz J. Kozubowski, Krzysztof Podgórski, Maximum Likelihood Estimation of Asymmetric Laplace Parameters Annals of the Institute of Statistical Mathematics. ,vol. 54, pp. 816- 826 ,(2002) , 10.1023/A:1022467519537
Ahmed Elgammal, David Harwood, Larry Davis, Non-parametric Model for Background Subtraction Lecture Notes in Computer Science. pp. 751- 767 ,(2000) , 10.1007/3-540-45053-X_48
Dar-Shyang Lee, J.J. Hull, B. Erol, A Bayesian framework for Gaussian mixture background modeling international conference on image processing. ,vol. 3, pp. 973- 976 ,(2003) , 10.1109/ICIP.2003.1247409
Stephen J. McKenna, Sumer Jabri, Zoran Duric, Azriel Rosenfeld, Harry Wechsler, Tracking Groups of People Computer Vision and Image Understanding. ,vol. 80, pp. 42- 56 ,(2000) , 10.1006/CVIU.2000.0870
Monnet, Mittal, Paragios, Visvanathan Ramesh, Background modeling and subtraction of dynamic scenes international conference on computer vision. ,vol. 3, pp. 1305- 1312 ,(2003) , 10.1109/ICCV.2003.1238641
P. Kumar, K. Sengupta, S. Ranganath, Real time detection and recognition of human profiles using inexpensive desktop cameras international conference on pattern recognition. ,vol. 1, pp. 1096- 1099 ,(2000) , 10.1109/ICPR.2000.905663
C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking computer vision and pattern recognition. ,vol. 2, pp. 246- 252 ,(1999) , 10.1109/CVPR.1999.784637
B. Stenger, V. Ramesh, N. Paragios, F. Coetzee, J.M. Buhmann, Topology free hidden Markov models: application to background modeling international conference on computer vision. ,vol. 1, pp. 294- 301 ,(2001) , 10.1109/ICCV.2001.937532