Approximation of Time-Dependent Viscoelastic Fluid Flow: SUPG Approximation

作者: Vincent J. Ervin , William W. Miles

DOI: 10.1137/S003614290241177X

关键词: A priori and a posterioriViscoelastic fluid flowConstitutive equationMathematicsFinite element methodNumerical approximationMathematical analysisViscoelasticityNumerical analysis

摘要: In this article we consider the numerical approximation to time-dependent viscoelasticity equations with an Oldroyd B constitutive equation. The is stabilized by using a streamline upwind Petrov--Galerkin (SUPG) for We analyze both semidiscrete and fully discrete approximations. For discretizations prove existence of, derive priori error estimates for,

参考文章(13)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
R. Byron Bird, Dynamics of Polymeric Liquids ,(1977)
C. Guillopé, J.C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law Nonlinear Analysis-theory Methods & Applications. ,vol. 15, pp. 849- 869 ,(1990) , 10.1016/0362-546X(90)90097-Z
J. Baranger, A. Machmoum, Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method Computer Methods in Applied Mechanics and Engineering. ,vol. 148, pp. 39- 52 ,(1997) , 10.1016/S0045-7825(97)00038-8
J. Baranger, S. Wardi, Numerical analysis of a FEM for a transient viscoelastic flow Computer Methods in Applied Mechanics and Engineering. ,vol. 125, pp. 171- 185 ,(1995) , 10.1016/0045-7825(94)00763-D
John G. Heywood, Rolf Rannacher, Finite-Element Approximation of the Nonstationary Navier–Stokes Problem. Part IV: Error Analysis for Second-Order Time Discretization SIAM Journal on Numerical Analysis. ,vol. 27, pp. 353- 384 ,(1990) , 10.1137/0727022