Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies

作者: Mark Thomas

DOI:

关键词: Theoretical physicsPlanck timeGravitational coupling constantGravitationGravitational redshiftObservable universeGravitational constantGeneral relativityUniversePhysics

摘要: The subject of fine tuning in physics is a long contentious issue especially now as it has hitched ride on the Multiverse bandwagon. maths quadratic forms are predominately featured and relate parameters G h c, which turn weighted during Planck Era(s) determined by relative time clocking. This simplifies search to these three values being important apparent fine-tuned (quasi tuning) for determining gravitational build structures restricted SM-4D type Universes. Two coupling constants (dimensionless) prescribed within Ghc complex. Both describe rigidity low energy our Universe (General Relativity toward endpoint neutron star, black hole formation). A Master vacuum field symmetry relation (Yang-Mills) presented using both their respective degenerate domains (electron neutron) shows rigid coherent from Codata set showing interdependency with each other, particularly G,h,c particle masses. If this correct then quasi fine-tuning operation. consensus example aligns mass-energy value charged pi-meson 139.58066 MeV (in near flat space) or curved metric 140.05050 MeV. demands that constant’s empirical be 6.67354236 x 10-11 m3kg-1s-2 2014 values. Yang-Mills perfect (hidden) due inclusion very weak charge (Zxx). gravity unification incorporated into Standard Model. true double copy pion permeates observable Universe.

参考文章(23)
D. J. Gross, Superstrings and Unification XXIV International Conference on High Energy Physics. pp. 310- 334 ,(1989) , 10.1007/978-3-642-74136-4_16
R. E. Borcherds, What is moonshine arXiv: Quantum Algebra. ,(1998)
Sidney Coleman, There Are No Classical Glueballs Communications in Mathematical Physics. ,vol. 55, pp. 113- 116 ,(1977) , 10.1007/BF01626513
Richard E Borcherds, Lattices like the Leech lattice Journal of Algebra. ,vol. 130, pp. 219- 234 ,(1990) , 10.1016/0021-8693(90)90110-A
J. H. Conway, N. J. A. Sloane, Lorentzian forms for the Leech lattice Bulletin of the American Mathematical Society. ,vol. 6, pp. 215- 217 ,(1982) , 10.1007/978-1-4757-2249-9_26
V. Milyukov, Shu-hua Fan, The Newtonian gravitational constant: Modern status of measurement and the new CODATA value Gravitation & Cosmology. ,vol. 18, pp. 216- 224 ,(2012) , 10.1134/S0202289312030061
Thibault Damour, The theoretical significance of G Measurement Science and Technology. ,vol. 10, pp. 467- 469 ,(1999) , 10.1088/0957-0233/10/6/309
A.M Odlyzko, N.J.A Sloane, New bounds on the number of unit spheres that can touch a unit sphere in n dimensions Journal of Combinatorial Theory, Series A. ,vol. 26, pp. 210- 214 ,(1979) , 10.1016/0097-3165(79)90074-8
S. Lenz, G. Borchert, H. Gorke, D. Gotta, T. Siems, D.F. Anagnostopoulos, M. Augsburger, D. Chatellard, J.P. Egger, D. Belmiloud, P. El-Khoury, P. Indelicato, M. Daum, P. Hauser, K. Kirch, L.M. Simons, A new determination of the mass of the charged pion Physics Letters B. ,vol. 416, pp. 50- 55 ,(1998) , 10.1016/S0370-2693(97)01337-3
Mark A. Ronan, Symmetry and the monster ,(2006)