Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach

作者: Hamid Dashti , Andrew Poley , Nancy F. Glenn , Nayani Ilangakoon , Lucas Spaete

DOI: 10.3390/RS11182141

关键词: Environmental scienceScale (map)Riparian zoneEndmemberHyperspectral imagingRemote sensingImaging spectroscopyVegetation classificationVegetation (pathology)Lidar

摘要: Author(s): Dashti, H; Poley, A; Glenn, NF; Ilangakoon, N; Spaete, L; Roberts, D; Enterkine, J; Flores, AN; Ustin, SL; Mitchell, JJ | Abstract: © 2019 by the authors. The sparse canopy cover and large contribution of bright background soil, along with heterogeneous vegetation types in close proximity, are common challenges for mapping dryland remote sensing. Consequently, results a single classification algorithm or one type sensor to characterize typically show low accuracy lack robustness. In our study, we improved semi-arid ecosystem based on use optical (hyperspectral) structural (lidar) information combined environmental characteristics landscape. To accomplish this goal, used both spectral angle mapper (SAM) multiple endmember mixture analysis (MESMA) classification. Lidar-derived maximum height delineated riparian zones were then modify Incorporating lidar into scheme increased overall from 60% 89%. Canopy structure can have strong influence variability provided complementary SAM's sensitivity shape but not magnitude spectra. Similar approaches map regions drylands uncertainty may be readily implemented unmixing algorithms applied upcoming space-based imaging spectroscopy lidar. This study advances understanding nuances associated xeric mesic regions, highlights importance incorporating sensors accurately heterogeneity ecosystems.

参考文章(86)
Keely L. Roth, Dar A. Roberts, Philip E. Dennison, Michael Alonzo, Seth H. Peterson, Michael Beland, Differentiating plant species within and across diverse ecosystems with imaging spectroscopy Remote Sensing of Environment. ,vol. 167, pp. 135- 151 ,(2015) , 10.1016/J.RSE.2015.05.007
Wei Zhi, Li Yuan, Guodong Ji, Yangsheng Liu, Zhang Cai, Xi Chen, A bibliometric review on carbon cycling research during 1993–2013 Environmental Earth Sciences. ,vol. 74, pp. 6065- 6075 ,(2015) , 10.1007/S12665-015-4629-7
Jessica J. Mitchell, Rupesh Shrestha, Lucas P. Spaete, Nancy F. Glenn, Combining airborne hyperspectral and LiDAR data across local sites for upscaling shrubland structural information: lessons for HyspIRI. Remote Sensing of Environment. ,vol. 167, pp. 98- 110 ,(2015) , 10.1016/J.RSE.2015.04.015
A. Ahlstrom, M. R. Raupach, G. Schurgers, B. Smith, A. Arneth, M. Jung, M. Reichstein, J. G. Canadell, P. Friedlingstein, A. K. Jain, E. Kato, B. Poulter, S. Sitch, B. D. Stocker, N. Viovy, Y. P. Wang, A. Wiltshire, S. Zaehle, N. Zeng, The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink Science. ,vol. 348, pp. 895- 899 ,(2015) , 10.1126/SCIENCE.AAA1668
S Shanmugam, P SrinivasaPerumal, None, Spectral matching approaches in hyperspectral image processing Journal of remote sensing. ,vol. 35, pp. 8217- 8251 ,(2014) , 10.1080/01431161.2014.980922
Amy L Neuenschwander, Lori A Magruder, Marcus Tyler, Landcover classification of small-footprint, full-waveform lidar data Journal of Applied Remote Sensing. ,vol. 3, pp. 033544- 033554 ,(2009) , 10.1117/1.3229944
Johannes Heinzel, Barbara Koch, Exploring full-waveform LiDAR parameters for tree species classification International Journal of Applied Earth Observation and Geoinformation. ,vol. 13, pp. 152- 160 ,(2011) , 10.1016/J.JAG.2010.09.010
Elhadi Adam, Onisimo Mutanga, Denis Rugege, Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review Wetlands Ecology and Management. ,vol. 18, pp. 281- 296 ,(2010) , 10.1007/S11273-009-9169-Z
Yanning Zhang, Haichao Zhang, Nasser M. Nasrabadi, Thomas S. Huang, Multi-metric learning for multi-sensor fusion based classification Information Fusion. ,vol. 14, pp. 431- 440 ,(2013) , 10.1016/J.INFFUS.2012.05.002