Effects of Ambient Temperature on the Performance of Turbofan Transonic Compressor by CFD Analysis and Artificial Neural Networks

作者: M. U. Sohail , M. Hassan , S. H. R. Hamdani , K. Pervez

DOI: 10.48084/ETASR.2998

关键词: Density of airInletMarine engineeringThrustRelative humidityComputational fluid dynamicsTurbofanPropulsive efficiencyEnvironmental scienceGas compressor

摘要: The unfavorable effects of non-uniform temperature inlet flow on gas turbine engine operations have always been a hindrance the performance turbo-fan engines. propulsive efficiency is function overall turbofan which itself dependent other ambient parameters. Variation compressor due to increase or decrease aircraft altitude, air density, relative humidity, and geographical climate conditions affects performance. This research focuses transonic distortion. A novel predictive approach based neural network model has implemented predict behavior at different conditions. produces substantially accurate results when compared CFD analysis. Computational from analysis show that thrust decreases higher lower density pressure regions.

参考文章(10)
Hongkui Zhou, Fang Yu, Kun Yang, Study on Design Compliance of Civil Turbofan Engine with the Requirements Defined in FAR 33.65 Procedia Engineering. ,vol. 80, pp. 183- 192 ,(2014) , 10.1016/J.PROENG.2014.09.073
Włodzimierz Balicki, Paweł Głowacki, Stefan Szczecinski, Ryszard Chachurski, Jerzy Szczeciński, Effect of the Atmosphere on the Performances of Aviation Turbine Engines Acta Mechanica et Automatica. ,vol. 8, pp. 70- 73 ,(2014) , 10.2478/AMA-2014-0012
Thamir K. Ibrahim, M. M. Rahman, Obed M. Ali, Firdaus Basrawi, Rizalman Mamat, Optimum Performance Enhancing Strategies of the Gas Turbine Based on The Effective Temperatures MATEC Web of Conferences. ,vol. 38, pp. 01002- ,(2016) , 10.1051/MATECCONF/20163801002
Natalie R. Smith, Reid A. Berdanier, John C. Fabian, Nicole L. Key, Reconciling Compressor Performance Differences for Varying Ambient Inlet Conditions Journal of Engineering for Gas Turbines and Power. ,vol. 137, pp. 122603- ,(2015) , 10.1115/1.4030518
Thamir K. Ibrahim, , M.M. Rahman, M.K. Mohammed, Firdaus Basrawi, , , , Statistical Analysis and Optimum Performance of the Gas Turbine Power Plant International Journal of Automotive and Mechanical Engineering. ,vol. 13, pp. 3215- 3215 ,(2016) , 10.15282/IJAME.13.1.2016.8.0268
A.M.Y. Razak, 11 – Simulating the effects of ambient temperature on engine performance, emissions and turbine life usage Industrial Gas Turbines#R##N#Performance and Operability. pp. 293- 322 ,(2007) , 10.1533/9781845693404.2.291
Zheng Liu, Xin Liu, Kan Wang, Zhongwei Liang, José A.F.O. Correia, Abílio De Jesus, GA-BP Neural Network-Based Strain Prediction in Full-Scale Static Testing of Wind Turbine Blades Energies. ,vol. 12, pp. 1026- ,(2019) , 10.3390/EN12061026
A Samad, K-Y Kim, Shape optimization of an axial compressor blade by multi-objective genetic algorithm Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. ,vol. 222, pp. 599- 611 ,(2008) , 10.1243/09576509JPE596
Ali Jokar, Roozbeh Zomorodian, Mohammad Bagher Ghofrani, Pooya Khodaparast, Active control of surge in centrifugal compressors using a brain emotional learning-based intelligent controller: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. ,vol. 230, pp. 0954406215602281- ,(2016) , 10.1177/0954406215602281
Yaomin Zhao, Harshal D. Akolekar, Jack Weatheritt, Vittorio Michelassi, Richard D. Sandberg, RANS turbulence model development using CFD-driven machine learning Journal of Computational Physics. ,vol. 411, pp. 109413- ,(2020) , 10.1016/J.JCP.2020.109413