Transmission Line Management Using Multi-objective Evolutionary Algorithm

作者: K. Pandiarajan , C. K. Babulal

DOI: 10.1007/978-3-319-03753-0_29

关键词: Control variableDifferential evolutionOptimization problemEvolutionary algorithmTransmission lineElectric power systemSortingParticle swarm optimizationMathematical optimizationComputer science

摘要: This paper presents an effective method of transmission line management in power systems. Two conflicting objectives 1 generation cost and 2 overload are optimized to provide non-dominated Pareto-optimal solutions. A fuzzy ranking-based multi-objective differential evolution MODE is used solve this complex nonlinear optimization problem. The generator real bus voltage magnitude taken as control variables minimize the objectives. ranking employed extract best compromise solution out available solutions depending upon its highest rank. N-1 contingency analysis carried identify most severe lines those selected for outage. effectiveness proposed has been analyzed on standard IEEE 30 system with smooth functions their results compared sorting genetic algorithm-II NSGA-II Differential DE. demonstrate superiority a promising evolutionary algorithm

参考文章(19)
O. Alsac, B. Stott, Optimal Load Flow with Steady-State Security IEEE Transactions on Power Apparatus and Systems. ,vol. 93, pp. 745- 751 ,(1974) , 10.1109/TPAS.1974.293972
Esmaeil Ghahremani, Innocent Kamwa, Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface IEEE Transactions on Power Systems. ,vol. 28, pp. 764- 778 ,(2013) , 10.1109/TPWRS.2012.2210253
C. Sumpavakup, I. Srikun, S. Chusanapiputt, A solution to the Optimal Power Flow using Artificial Bee Colony algorithm ieee international conference on power system technology. pp. 1- 5 ,(2010) , 10.1109/POWERCON.2010.5666516
K. Gnanambal, C.K. Babulal, Maximum loadability limit of power system using hybrid differential evolution with particle swarm optimization International Journal of Electrical Power & Energy Systems. ,vol. 43, pp. 150- 155 ,(2012) , 10.1016/J.IJEPES.2012.04.033
Brian Stott, Eric Hobson, Power System Security Control Calculations Using Linear Programming, Part II IEEE Transactions on Power Apparatus and Systems. ,vol. 97, pp. 1713- 1720 ,(1978) , 10.1109/TPAS.1978.354664
Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Suganthan, Qingfu Zhang, None, Multiobjective evolutionary algorithms: A survey of the state of the art Swarm and evolutionary computation. ,vol. 1, pp. 32- 49 ,(2011) , 10.1016/J.SWEVO.2011.03.001
Adel A. Abou EL Ela, Shaimaa R. Spea, Optimal corrective actions for power systems using multi-objective genetic algorithms Electric Power Systems Research. ,vol. 79, pp. 722- 733 ,(2009) , 10.1016/J.EPSR.2008.10.007
A.N Udupa, G.K Purushothama, K Parthasarathy, D Thukaram, A fuzzy control for network overload alleviation International Journal of Electrical Power & Energy Systems. ,vol. 23, pp. 119- 128 ,(2001) , 10.1016/S0142-0615(00)00049-1
S. Sreejith, Sishaj Psimon, M.P. Selvan, Optimal location of interline power flow controller in a power system network using ABC algorithm Archives of Electrical Engineering. ,vol. 62, pp. 91- 110 ,(2013) , 10.2478/AEE-2013-0007
M.A. Abido, Optimal power flow using particle swarm optimization International Journal of Electrical Power & Energy Systems. ,vol. 24, pp. 563- 571 ,(2002) , 10.1016/S0142-0615(01)00067-9