作者: Alberto Tonda , Evelyne Lutton , Giovanni Squillero
DOI: 10.1007/978-3-642-24094-2_7
关键词: Scheme (programming language) 、 Genetic operator 、 Scalability 、 Set (abstract data type) 、 Evolutionary algorithm 、 Cooperative coevolution 、 Mathematical optimization 、 Scale (descriptive set theory) 、 Artificial intelligence 、 Computer science 、 Square (algebra)
摘要: We present an analysis of the behaviour Cooperative Co-evolution algorithms (CCEAs) on a simple test problem, that is optimal placement set lamps in square room, for various problems sizes. makes it possible to exploit more efficiently artificial Darwinism scheme, as soon turn optimisation problem into co-evolution interdependent sub-parts searched solution. show here how two cooperative strategies, Group Evolution (GE) and Parisian (PE) can be built problem. An experimental then compares classical evolution GE PE, analyses their with respect scale.