A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method

作者: Cheng-Hung Huang , Shao-Pei Wang

DOI: 10.1016/S0017-9310(99)00020-4

关键词: SingularityConjugate gradient methodApplied mathematicsInverseMathematicsGradient methodBoundary (topology)ThermodynamicsNonlinear conjugate gradient methodHeat fluxInverse problem

摘要: Abstract In the present study a three-dimensional (3-D) transient inverse heat conduction problem is solved using conjugate gradient method (CGM) and general purpose commercial code CFX4.2-based algorithm to estimate unknown boundary flux in any 3-D irregular domain. The advantage of calling CFX4.2 as subroutine calculation lies that many difficult but practical problems can be under this construction. Results obtained by solve these are justified based on numerical experiments. It concluded accurate fluxes estimated CGM except for final time. reason improvement singularity addressed. Finally, effects measurement errors solutions discussed.

参考文章(15)
Helcio RB Orlande, Inverse heat transfer problems ,(1994)
C.H. Huang, T.M. Ju, A.A. Tseng, The estimation of surface thermal behavior of the working roll in hot rolling process International Journal of Heat and Mass Transfer. ,vol. 38, pp. 1019- 1031 ,(1995) , 10.1016/0017-9310(94)00218-K
C. H. Huang, M. N. Özişik, DIRECT INTEGRATION APPROACH FOR SIMULTANEOUSLY ESTIMATING TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY AND HEAT CAPACITY Numerical Heat Transfer, Part A: Applications. ,vol. 20, pp. 95- 110 ,(1991) , 10.1080/10407789108944811
Cheng‐Hung Huang, Jan‐Yue Wu, Two‐dimensional inverse problem in estimating heat fluxes of an enclosure with unknown internal heat sources Journal of Applied Physics. ,vol. 76, pp. 133- 141 ,(1994) , 10.1063/1.357118
R. Pasquetti, C. Le Niliot, Boundary element approach for inverse heat conduction problems; Application to a bidimensional transient numerical experiment Numerical Heat Transfer Part B-fundamentals. ,vol. 20, pp. 169- 189 ,(1991) , 10.1080/10407799108945000
O. M. Alifanov, Solution of an inverse problem of heat conduction by iteration methods Journal of Engineering Physics. ,vol. 26, pp. 471- 476 ,(1974) , 10.1007/BF00827525
C.H. Huang, M.N. Ozisik, Inverse problem of determining the unknown strength of an internal plane heat source Journal of The Franklin Institute-engineering and Applied Mathematics. ,vol. 329, pp. 751- 764 ,(1992) , 10.1016/0016-0032(92)90086-V
Pekka Tervola, A method to determine the thermal conductivity from measured temperature profiles International Journal of Heat and Mass Transfer. ,vol. 32, pp. 1425- 1430 ,(1989) , 10.1016/0017-9310(89)90066-5
M. Prud'homme, T. Hung Nguyen, WHOLE TIME-DOMAIN APPROACH TO THE INVERSE NATURAL CONVECTION PROBLEM Numerical Heat Transfer Part A-applications. ,vol. 32, pp. 169- 186 ,(1997) , 10.1080/10407789708913886
L. Lasdon, S. Mitter, A. Waren, The conjugate gradient method for optimal control problems IEEE Transactions on Automatic Control. ,vol. 12, pp. 132- 138 ,(1967) , 10.1109/TAC.1967.1098538