Haar multipliers meet Bellman functions

作者: María Cristina Pereyra

DOI: 10.4171/RMI/584

关键词: CombinatoricsSquare (algebra)Mathematical analysisFunction (mathematics)SigmaBounded functionMultiplier (Fourier analysis)InverseLinear function (calculus)Measure (mathematics)Mathematics

摘要: Using Bellman function techniques, we obtain the optimal dependence of operator norms in $L^2(\mathbb{R})$ Haar multipliers $T_w^t$ on corresponding $RH^d_2$ or $A^d_2$ characteristic weight $w$, for $t=1,\pm 1/2$. These results can be viewed as particular cases estimates homogeneous spaces $L^2(vd\sigma)$, $\sigma$ a doubling positive measure and $v\in A^d_2(d\sigma)$, weighted dyadic square $S_{\sigma}^d$. We show that such functions $L^2(v d\sigma)$ are bounded by linear $A^d_2(d\sigma )$ $v$, where constant depends only $\sigma$. also an inverse estimate Both known when $d\sigma=dx$. deduce both from multiplier $(T_v^{\sigma})^{1/2}$ $L^2(d\sigma)$ A_2^d(d\sigma)$, which mirrors $T_w^{1/2}$ $w\in A^d_2$. The adapted to measure, $(T_v^{\sigma})^{1/2}$, is proved using functions. sharp sense rates cannot improved expected hold all $\sigma$, since case $d\sigma=dx$, $v=w$, correspond $T^{1/2}_w$ proven sharp.

参考文章(22)
Gerard J. Murphy, C*-Algebras and Operator Theory ,(1990)
S. Petermichl, S. Pott, An estimate for weighted Hilbert transform via square functions Transactions of the American Mathematical Society. ,vol. 354, pp. 1699- 1703 ,(2001) , 10.1090/S0002-9947-01-02938-5
R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals Studia Mathematica. ,vol. 51, pp. 241- 250 ,(1974) , 10.4064/SM-51-3-241-250
Andrei K. Lerner, On some weighted norm inequalities for Littlewood–Paley operators Illinois Journal of Mathematics. ,vol. 52, pp. 653- 666 ,(2008) , 10.1215/IJM/1248355356
F. Nazarov, S. Treil, A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers Journal of the American Mathematical Society. ,vol. 12, pp. 909- 928 ,(1999) , 10.1090/S0894-0347-99-00310-0
Janine Wittwer, A sharp estimate on the norm of the continuous square function Proceedings of the American Mathematical Society. ,vol. 130, pp. 2335- 2342 ,(2002) , 10.1090/S0002-9939-02-06342-6
Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function Transactions of the American Mathematical Society. ,vol. 165, pp. 207- 226 ,(1972) , 10.1090/S0002-9947-1972-0293384-6
J Pipher, R Fefferman, MULTIPARAMETER OPERATORS AND SHARP WEIGHTED INEQUALITIES American Journal of Mathematics. ,vol. 119, pp. 337- 369 ,(1997) , 10.1353/AJM.1997.0011
Rodrigo Bañuelos, Prabhu Janakiraman, $L^p$--bounds for the Beurling--Ahlfors transform Transactions of the American Mathematical Society. ,vol. 360, pp. 3603- 3612 ,(2008) , 10.1090/S0002-9947-08-04537-6
Stefanie Petermichl, Janine Wittwer, A sharp estimate for the weighted Hilbert transform via Bellman functions Michigan Mathematical Journal. ,vol. 50, pp. 71- 88 ,(2002) , 10.1307/MMJ/1022636751