Feynman integral for singular Lagrangians

作者: L. D. Faddeev

DOI: 10.1007/BF01028566

关键词: Path integral formulationWheeler–Feynman absorber theoryBRST quantizationGauge fixingPropagatorRegularization (physics)Feynman diagramFractional quantum mechanicsMathematical physicsPhysics

摘要:

参考文章(19)
Peter G. Bergmann, Irwin Goldberg, Dirac Bracket Transformations in Phase Space Physical Review. ,vol. 98, pp. 531- 538 ,(1955) , 10.1103/PHYSREV.98.531
CLAUDE GARROD, Hamiltonian Path-Integral Methods Reviews of Modern Physics. ,vol. 38, pp. 483- 494 ,(1966) , 10.1103/REVMODPHYS.38.483
M. Veltman, Perturbation theory of massive Yang-Mills fields Nuclear Physics. ,vol. 7, pp. 637- 650 ,(1968) , 10.1016/0550-3213(68)90197-1
RES JOST, Poisson Brackets (An Unpedagogical Lecture) Reviews of Modern Physics. ,vol. 36, pp. 572- 579 ,(1964) , 10.1103/REVMODPHYS.36.572
R. P. Feynman, Space-Time Approach to Non-Relativistic Quantum Mechanics Reviews of Modern Physics. ,vol. 20, pp. 367- 387 ,(1948) , 10.1103/REVMODPHYS.20.367
W. Tobocman, Transition amplitudes as sums over histories Il Nuovo Cimento. ,vol. 3, pp. 1213- 1229 ,(1956) , 10.1007/BF02785004
Bryce S. DeWitt, Quantum Theory of Gravity. II. The Manifestly Covariant Theory Physical Review. ,vol. 162, pp. 1195- 1239 ,(1967) , 10.1103/PHYSREV.162.1195
L.D. Faddeev, V.N. Popov, Feynman diagrams for the Yang-Mills field Physics Letters B. ,vol. 25, pp. 29- 30 ,(1967) , 10.1016/0370-2693(67)90067-6
The theory of gravitation in Hamiltonian form Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 246, pp. 333- 343 ,(1958) , 10.1098/RSPA.1958.0142