Learning in Two‐Player Matrix Games

作者:

DOI: 10.1002/9781118884614.CH3

关键词: Matching penniesMatrix gamesBest responseMathematical economicsPrisoner's dilemmaEconomics

摘要:

参考文章(14)
Christopher J. C. H. Watkins, Peter Dayan, Technical Note : \cal Q -Learning Machine Learning. ,vol. 8, pp. 279- 292 ,(1992) , 10.1007/BF00992698
Michael L. Littman, Markov games as a framework for multi-agent reinforcement learning Machine Learning Proceedings 1994. pp. 157- 163 ,(1994) , 10.1016/B978-1-55860-335-6.50027-1
Christopher J.C.H. Watkins, Peter Dayan, Technical Note Q-Learning Machine Learning. ,vol. 8, pp. 279- 292 ,(1992) , 10.1023/A:1022676722315
M Kearns, Y Mansour, S Singh, Nash convergence of gradient dynamics in general-sum games uncertainty in artificial intelligence. pp. 541- 548 ,(2000)
Dongbing Gu, Erfu Yang, A survey on multiagent reinforcement learning towards multi-robot systems computational intelligence and games. pp. 292- 299 ,(2005)
Lucian Busoniu, Robert Babuska, Bart De Schutter, Multi-Agent Reinforcement Learning: A Survey international conference on control, automation, robotics and vision. pp. 1- 6 ,(2006) , 10.1109/ICARCV.2006.345353
Xiaosong Lu, Howard M Schwartz, An investigation of guarding a territory problem in a grid world advances in computing and communications. pp. 3204- 3210 ,(2010) , 10.1109/ACC.2010.5530771
F.A. Dahl, The lagging anchor model for game learning—a solution to the Crawford puzzle Journal of Economic Behavior and Organization. ,vol. 57, pp. 287- 303 ,(2005) , 10.1016/J.JEBO.2003.09.018
S. Lakshmivarahan, K. S. Narendra, Learning Algorithms for Two-Person Zero-Sum Stochastic Games with Incomplete Information: A Unified Approach SIAM Journal on Control and Optimization. ,vol. 20, pp. 541- 552 ,(1982) , 10.1137/0320039