Resampling methods for tests in regression models with autocorrelated errors

作者: Robert K. Rayner

DOI: 10.1016/0165-1765(91)90033-H

关键词: Regression dilutionResamplingRegressionStatisticsRegression analysisType I and type II errorsJackknife resamplingMonte Carlo methodMathematicsEconometricsAutocorrelation

摘要: Abstract This paper presents the results of a Monte Carlo study which suggest that bootstrap — in combination with bias-reduction method such as half-sample jackknife substantially corrects problem small and moderate samples excessive Type I error probabilities tests on coefficients regression models serially correlated disturbances. The methods are likely to be applicable testing many other situations.

参考文章(17)
Rudolf Beran, Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements Journal of the American Statistical Association. ,vol. 83, pp. 687- 697 ,(1988) , 10.1080/01621459.1988.10478649
Kazuhiro Ohtani, On estimating and testing in a linear regression model with autocorrelated errors Journal of Econometrics. ,vol. 44, pp. 333- 346 ,(1990) , 10.1016/0304-4076(90)90062-X
Lonnie Magee, AN EDGEWORTH TEST SIZE CORRECTION FOR THE LINEAR MODEL WITH AR(1) ERRORS Econometrica. ,vol. 57, pp. 661- 674 ,(1989) , 10.2307/1911057
Robert K. Rayner, Bootstrapping p Values and Power in the First-Order Autoregression: A Monte Carlo Investigation Journal of Business & Economic Statistics. ,vol. 8, pp. 251- 263 ,(1990) , 10.1080/07350015.1990.10509797
Thomas J. Rothenberg, APPROXIMATE NORMALITY OF GENERALIZED LEAST SQUARES ESTIMATES Econometrica. ,vol. 52, pp. 811- 825 ,(1984) , 10.2307/1911185
Ben Kwok, Michael R. Veall, The jackknife and regression with AR(1) errors Economics Letters. ,vol. 26, pp. 247- 252 ,(1988) , 10.1016/0165-1765(88)90143-7
Asatoshi Maeshiro, On the Retention of the First Observations in Serial Correlation Adjustment of Regression Models International Economic Review. ,vol. 20, pp. 259- 265 ,(1979) , 10.2307/2526430
Peter Hall, Theoretical Comparison of Bootstrap Confidence Intervals Annals of Statistics. ,vol. 16, pp. 927- 953 ,(1988) , 10.1214/AOS/1176350933