作者: Robert K. Rayner
DOI: 10.1016/0165-1765(91)90033-H
关键词: Regression dilution 、 Resampling 、 Regression 、 Statistics 、 Regression analysis 、 Type I and type II errors 、 Jackknife resampling 、 Monte Carlo method 、 Mathematics 、 Econometrics 、 Autocorrelation
摘要: Abstract This paper presents the results of a Monte Carlo study which suggest that bootstrap — in combination with bias-reduction method such as half-sample jackknife substantially corrects problem small and moderate samples excessive Type I error probabilities tests on coefficients regression models serially correlated disturbances. The methods are likely to be applicable testing many other situations.