Graph partitioning via adaptive spectral techniques

作者: AMIN COJA-OGHLAN

DOI: 10.1017/S0963548309990514

关键词: Adjacency matrixNeighbourhood (graph theory)MathematicsCombinatoricsDiscrete mathematicsGraph energyDistance-regular graphGraph partitionGraph powerBound graphStrongly regular graph

摘要: In this paper we study the use of spectral techniques for graph partitioning. Let G = (V, E) be a whose vertex set has ‘latent’ partition V1,. . ., Vk. Moreover, consider ‘density matrix’ Ɛ (Ɛvw)v, sw∈V such that, v ∈ Vi and w Vj, entry Ɛvw is fraction all possible Vi−Vj-edges that are actually present in G. We show on input (G, k) Vk can (very nearly) recovered polynomial time via methods, provided following holds: approximates adjacency matrix operator norm, vertices Vi, Vj ≠ corresponding column vectors Ɛv, Ɛw separated, sufficiently ‘regular’ with respect to Ɛ. This result particular applies sparse graphs bounded average degree as n #V → ∞, it various consequences partitioning random graphs.

参考文章(33)
Anirban Dasgupta, John Hopcroft, Ravi Kannan, Pradipta Mitra, Spectral Clustering by Recursive Partitioning Lecture Notes in Computer Science. pp. 256- 267 ,(2006) , 10.1007/11841036_25
George Karypis, Kirk Schloegel, Vipin Kumar, Graph partitioning for high-performance scientific simulations parallel computing. pp. 491- 541 ,(2003)
F. McSherry, Spectral partitioning of random graphs international conference on cluster computing. pp. 529- 537 ,(2001) , 10.1109/SFCS.2001.959929
Michael Krivelevich, Benny Sudakov, Pseudo-random Graphs Bolyai Society Mathematical Studies. pp. 199- 262 ,(2006) , 10.1007/978-3-540-32439-3_10
Andreas Goerdt, André Lanka, On the hardness and easiness of random 4-SAT formulas international symposium on algorithms and computation. pp. 470- 483 ,(2004) , 10.1007/978-3-540-30551-4_42
Hui Chen, Alan Frieze, Coloring Bipartite Hypergraphs integer programming and combinatorial optimization. pp. 345- 358 ,(1996) , 10.1007/3-540-61310-2_26
Uriel Feige, Joe Kilian, Heuristics for Semirandom Graph Problems Journal of Computer and System Sciences. ,vol. 63, pp. 639- 671 ,(2001) , 10.1006/JCSS.2001.1773
Ravi B. Boppana, Eigenvalues and graph bisection: An average-case analysis 28th Annual Symposium on Foundations of Computer Science (sfcs 1987). pp. 280- 285 ,(1987) , 10.1109/SFCS.1987.22
Abraham Flaxman, A spectral technique for random satisfiable 3CNF formulas symposium on discrete algorithms. pp. 357- 363 ,(2003) , 10.5555/644108.644166
MICHAEL KRIVELEVICH, BENNY SUDAKOV, The Largest Eigenvalue of Sparse Random Graphs Combinatorics, Probability & Computing. ,vol. 12, pp. 61- 72 ,(2003) , 10.1017/S0963548302005424