L-space surgery and twisting operation

作者: Kimihiko Motegi

DOI: 10.2140/AGT.2016.16.1727

关键词: Berge knotCombinatoricsMathematicsKnot complementTrefoil knotFibered knotSkein relationKnot theoryTorus knotKnot invariantMathematical analysis

摘要: A knot in the 3-sphere is called an L-space if it admits a nontrivial Dehn surgery yielding L-space, i.e. rational homology with smallest possible Heegaard Floer homology. Given K, take unknotted circle c and twist K n times along to obtain family { K_n }. We give sufficient condition for } contain infinitely many knots. As application we show that each torus hyperbolic Berge can so contains also demonstrate there of knots member which has tunnel number greater than one.

参考文章(50)
Paolo Lisca, Paolo Lisca, Paolo Lisca, András I. Stipsicz, András I. Stipsicz, András I. Stipsicz, Ozsváth-Szabó invariants and tight contact 3-manifolds, III Journal of Symplectic Geometry. ,vol. 5, pp. 357- 384 ,(2007) , 10.4310/JSG.2007.V5.N4.A1
Masaharu KOUNO, Kimihiko MOTEGI, Tetsuo SHIBUYA, Twisting and knot types Journal of The Mathematical Society of Japan. ,vol. 44, pp. 199- 216 ,(1992) , 10.2969/JMSJ/04420199
Marc Lackenby, Robert Meyerhoff, The maximal number of exceptional Dehn surgeries Inventiones mathematicae. ,vol. 191, pp. 341- 382 ,(2013) , 10.1007/S00222-012-0395-2
Tye Lidman, Jennifer Hom, Faramarz Vafaee, Berge-Gabai knots and L-space satellite operations Algebraic & Geometric Topology. ,vol. 14, pp. 3745- 3763 ,(2015) , 10.2140/AGT.2014.14.3745
Peter Ozsváth, Zoltán Szabó, On knot Floer homology and lens space surgeries Topology. ,vol. 44, pp. 1281- 1300 ,(2005) , 10.1016/J.TOP.2005.05.001
William P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry Bulletin of the American Mathematical Society. ,vol. 6, pp. 357- 381 ,(1982) , 10.1090/S0273-0979-1982-15003-0
David Gabai, Surgery on knots in solid tori Topology. ,vol. 28, pp. 1- 6 ,(1989) , 10.1016/0040-9383(89)90028-1
Peter Ozsvath, Zoltan Szabo, Holomorphic disks and genus bounds Geometry & Topology. ,vol. 8, pp. 311- 334 ,(2004) , 10.2140/GT.2004.8.311
John C. Dean, Small Seifert-fibered Dehn surgery on hyperbolic knots Algebraic & Geometric Topology. ,vol. 3, pp. 435- 472 ,(2003) , 10.2140/AGT.2003.3.435
David Eisenbud, Ulrich Hirsch, Walter Neumann, Transverse foliations of Seifert bundles and self homeomorphism of the circle Commentarii Mathematici Helvetici. ,vol. 56, pp. 638- 660 ,(1981) , 10.1007/BF02566232