Scaling theory of localization and non-ohmic effects in two dimensions

作者: Elihu Abrahams , T.V. Ramakrishnan

DOI: 10.1016/0022-3093(80)90566-9

关键词: Curse of dimensionalityLogarithmPhysicsConductivityExponential functionOhmic contactConductanceCondensed matter physicsScalingElectric field

摘要: A scaling argument for the conductance G of a disordered electronic system permits interpolation behavior between localized and extended limits. For dimensionality d>2, there is mobility edge at which conductivity goes continuously to zero. At d=2, no true metallic conduction; smoothly from logarithmic exponential decrease with sample size L. perturbation calculation confirms ln L weak disorder. finite temperature T electric field E, effective length scales depending upon E are derived on basis relaxation heating models purposes comparison experiments thin films. These show non-ohmic contributions conductivity.

参考文章(7)
D. J. Thouless, Maximum metallic resistance in thin wires Physical Review Letters. ,vol. 39, pp. 1167- 1169 ,(1977) , 10.1103/PHYSREVLETT.39.1167
J. S. Langer, T. Neal, Breakdown of the Concentration Expansion for the Impurity Resistivity of Metals Physical Review Letters. ,vol. 16, pp. 984- 986 ,(1966) , 10.1103/PHYSREVLETT.16.984
I. E. Dzyaloshinski, L. P. Gorkov, A. A. Abrikosov, Richard A. Silverman, George H. Weiss, Methods of Quantum Field Theory in Statistical Physics ,(1963)
E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan, Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions Physical Review Letters. ,vol. 42, pp. 673- 676 ,(1979) , 10.1103/PHYSREVLETT.42.673
Nevill Francis Mott, Metal-insulator transitions ,(1974)
P. W. Anderson, Absence of Diffusion in Certain Random Lattices Physical Review. ,vol. 109, pp. 1492- 1505 ,(1958) , 10.1103/PHYSREV.109.1492