Layer recurrent neural network based intelligent user activity classification model using smartphone

作者: Harshit Jain , Nuzhat Fatema

DOI: 10.3233/JIFS-169793

关键词: Artificial intelligencePattern recognitionComputer scienceActivity classificationRecurrent neural networkLayer (object-oriented design)

摘要:

参考文章(8)
Rong Liu, Ming Liu, Recognizing Human Activities Based on Multi-Sensors Fusion international conference on bioinformatics and biomedical engineering. pp. 1- 4 ,(2010) , 10.1109/ICBBE.2010.5514802
Ronald J. Williams, David Zipser, A learning algorithm for continually running fully recurrent neural networks Neural Computation. ,vol. 1, pp. 270- 280 ,(1989) , 10.1162/NECO.1989.1.2.270
Xing Su, Hanghang Tong, Ping Ji, Activity recognition with smartphone sensors Tsinghua Science & Technology. ,vol. 19, pp. 235- 249 ,(2014) , 10.1109/TST.2014.6838194
Carlos Paniagua, Huber Flores, Satish Narayana Srirama, Mobile Sensor Data Classification for Human Activity Recognition using MapReduce on Cloud Procedia Computer Science. ,vol. 10, pp. 585- 592 ,(2012) , 10.1016/J.PROCS.2012.06.075
Media A. Ayu, Teddy Mantoro, Ahmad Faridi A. Matin, Saeed S. O. Basamh, Recognizing user activity based on accelerometer data from a mobile phone 2011 IEEE Symposium on Computers & Informatics. pp. 617- 621 ,(2011) , 10.1109/ISCI.2011.5958987
Neslihan Kase, Mohammadreza Babaee, Gerhard Rigoll, Multi-view human activity recognition using motion frequency 2017 IEEE International Conference on Image Processing (ICIP). pp. 3963- 3967 ,(2017) , 10.1109/ICIP.2017.8297026
, , , , , Wearable-Based Human Activity Recognition Using an IoT Approach Journal of Sensor and Actuator Networks. ,vol. 6, pp. 28- ,(2017) , 10.3390/JSAN6040028
Pegah Esfahani, Hadi Tabatabaee Malazi, PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones international symposium on computer architecture. ,(2017) , 10.1109/CADS.2017.8310680