作者: G. E. Mints
DOI: 10.1007/BF01404107
关键词: Enriched category 、 Discrete category 、 Morphism 、 Mathematics 、 Coherence theorem 、 Symmetric monoidal category 、 Algebra 、 Category theory 、 Closed monoidal category 、 Cartesian closed category 、 Statistics and Probability 、 Applied mathematics 、 General Mathematics
摘要: The main aim of this article is to suggest a translation the simplest concepts category theory into language (structural) proofs, use simplify proofs some known results [1], and obtain two new ones: coherence theorem for canonical morphisms in (nonmonoidal, nonsymmetric) closed categories [2], solution problem equality morphisms. Extensions these monoidal closed, symmetric are sketched. decision procedure obtained by means correct faithful an expansion λ-language, which has tools special account “superfluous” premises implications (the thinning rule). expansions λ-language have so far appeared literature not possessed facility.