作者: Stefano Giani , Luka Grubišić , Harri Hakula , Jeffrey S. Ovall
DOI: 10.1016/J.AMC.2017.07.007
关键词: Degenerate energy levels 、 Subspace topology 、 Mathematics 、 Discontinuous Galerkin method 、 Eigenvalues and eigenvectors 、 Finite element method 、 Estimator 、 Mathematical analysis 、 Perturbation theory 、 Discretization
摘要: We provide an abstract framework for analyzing discretization error eigenvalue problems discretized by discontinuous Galerkin methods such as the local method and symmetric interior penalty method. The analysis applies to clusters of eigenvalues that may include degenerate eigenvalues. use asymptotic perturbation theory linear operators analyze dependence eigenspaces on parameter. first formulate DG in quadratic forms construct a companion infinite dimensional problem. With problem, eigenvalue/vector is estimated sum two components. component can be viewed “non-conformity” we argue neglected practical estimates properly choosing second posteriori using auxiliary subspace techniques, this constitutes estimate.