An a posteriori estimator of eigenvalue/eigenvector error for penalty-type discontinuous Galerkin methods

作者: Stefano Giani , Luka Grubišić , Harri Hakula , Jeffrey S. Ovall

DOI: 10.1016/J.AMC.2017.07.007

关键词: Degenerate energy levelsSubspace topologyMathematicsDiscontinuous Galerkin methodEigenvalues and eigenvectorsFinite element methodEstimatorMathematical analysisPerturbation theoryDiscretization

摘要: We provide an abstract framework for analyzing discretization error eigenvalue problems discretized by discontinuous Galerkin methods such as the local method and symmetric interior penalty method. The analysis applies to clusters of eigenvalues that may include degenerate eigenvalues. use asymptotic perturbation theory linear operators analyze dependence eigenspaces on parameter. first formulate DG in quadratic forms construct a companion infinite dimensional problem. With problem, eigenvalue/vector is estimated sum two components. component can be viewed “non-conformity” we argue neglected practical estimates properly choosing second posteriori using auxiliary subspace techniques, this constitutes estimate.

参考文章(33)
Harri Hakula, Michael Neilan, Jeffrey S. Ovall, A Posteriori Estimates Using Auxiliary Subspace Techniques Journal of Scientific Computing. ,vol. 72, pp. 97- 127 ,(2017) , 10.1007/S10915-016-0352-0
Ilaria Perugia, Dominik Schötzau, An hp -Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems Journal of Scientific Computing. ,vol. 17, pp. 561- 571 ,(2002) , 10.1023/A:1015118613130
Pavel Šolín, Karel Segeth, Ivo Doležel, Higher-Order Finite Element Methods ,(2003)
Paola F. Antonietti, Annalisa Buffa, Ilaria Perugia, Discontinuous Galerkin approximation of the Laplace eigenproblem Computer Methods in Applied Mechanics and Engineering. ,vol. 195, pp. 3483- 3503 ,(2006) , 10.1016/J.CMA.2005.06.023
Ivo Babuška, The Finite Element Method with Penalty Mathematics of Computation. ,vol. 27, pp. 221- 228 ,(1973) , 10.1090/S0025-5718-1973-0351118-5
Stefano Giani, Luka Grubišić, Jeffrey S. Ovall, Benchmark results for testing adaptive finite element eigenvalue procedures Applied Numerical Mathematics. ,vol. 62, pp. 121- 140 ,(2012) , 10.1016/J.APNUM.2011.10.007
Luka Grubišić, Relative Convergence Estimates for the Spectral Asymptotic in the Large Coupling Limit Integral Equations and Operator Theory. ,vol. 65, pp. 51- 81 ,(2009) , 10.1007/S00020-009-1714-X
J.Tinsley Oden, Mark Ainsworth, A Posteriori Error Estimation in Finite Element Analysis ,(2000)