Nonlinear Koopman Modes and Coherency Identification of Coupled Swing Dynamics

作者: Yoshihiko Susuki , Igor Mezic

DOI: 10.1109/TPWRS.2010.2103369

关键词: Statistical physicsModal analysisControl theoryIdentification (information)Electric power systemComputer scienceOperator (physics)Dynamics (mechanics)Nonlinear systemSwingComputation

摘要: We perform modal analysis of short-term swing dynamics in multi-machine power systems. The is based on the so-called Koopman operator, a linear, infinite-dimensional operator that defined for any nonlinear dynamical system and captures full information system. Modes derived through spectral called modes, provide extension linear oscillatory modes. Computation modes extracts single-frequency, spatial embedded non-stationary data short-term, dynamics, it provides novel technique identification coherent swings machines.

参考文章(36)
Andrzej Lasota, Michael C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics ,(1993)
Gal Berkooz, John Leask Lumley, Philip Holmes, Turbulence, Coherent Structures, Dynamical Systems and Symmetry ,(1996)
Clarence W. Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, Dan S. Henningson, Reduced-order models for flow control: balanced models and Koopman modes 7th IUTAM Symposium on Laminar-Turbulent Transition. Royal Inst Technol, Stockholm, SWEDEN. JUN 23-26, 2009. ,vol. 18, pp. 43- 50 ,(2010) , 10.1007/978-90-481-3723-7_6
Model reduction for analysis of cascading failures in power systems american control conference. ,vol. 6, pp. 4208- 4212 ,(1999) , 10.1109/ACC.1999.786351
J. Winkelman, J. Chow, B. Bowler, B. Avramovic, P. Kokotovic, An Analysis of Interarea Dynamics of Multi-Machine Systems IEEE Power & Energy Magazine. ,vol. 2, pp. 754- 763 ,(1981) , 10.1109/TPAS.1981.316927
Ram Nath, Surrinder Lamba, K.s. Rao, Coherency Based System Decomposition into Study and External Areas Using Weak Coupling IEEE Power & Energy Magazine. ,vol. 104, pp. 1443- 1449 ,(1985) , 10.1109/TPAS.1985.319158
Y. OHSAWA, M. HAYASHI, Construction of power system transient stability equivalents using the Lyapunov function International Journal of Electronics. ,vol. 50, pp. 273- 288 ,(1981) , 10.1080/00207218108901262
B. O. Koopman, Hamiltonian Systems and Transformation in Hilbert Space Proceedings of the National Academy of Sciences of the United States of America. ,vol. 17, pp. 315- 318 ,(1931) , 10.1073/PNAS.17.5.315
Y Susuki, I Mezic, Nonlinear Koopman modes of coupled swing dynamics and coherency identification power and energy society general meeting. pp. 1- 8 ,(2010) , 10.1109/PES.2010.5589363