Real-Time Obstacle Detection System in Indoor Environment for the Visually Impaired Using Microsoft Kinect Sensor

作者: Huy-Hieu Pham , Thi-Lan Le , Nicolas Vuillerme

DOI: 10.1155/2016/3754918

关键词: Mobility aidStairsObstacleResidualComputer visionStep detectionDoorsSupport systemVisually impairedEngineeringArtificial intelligence

摘要: Any mobility aid for the visually impaired people should be able to accurately detect and warn about nearly obstacles. In this paper, we present a method support system obstacle in indoor environment based on Kinect sensor 3D-image processing. Color-Depth data of scene front user is collected using with standard framework 3D sensing OpenNI processed by PCL library extract accurate information The experiments have been performed dataset multiple scenarios different lighting conditions. Results showed that our four types obstacle: walls, doors, stairs, residual class covers loose obstacles floor. Precisely, walls floor are detected practically all cases, whereas doors 90.69% out 43 positive image samples. For step detection, correctly upstairs 97.33% 75 images while correct rate downstairs detection lower 89.47% from 38 images. Our further allows computation distance between

参考文章(11)
Alejandro Pérez-Yus, Gonzalo López-Nicolás, José J. Guerrero, Detection and Modelling of Staircases Using a Wearable Depth Sensor european conference on computer vision. pp. 449- 463 ,(2014) , 10.1007/978-3-319-16199-0_32
Uta R. Roentgen, Gert Jan Gelderblom, Mathijs Soede, Luc P. de Witte, Inventory of Electronic Mobility Aids for Persons with Visual Impairments: A Literature Review Journal of Visual Impairment & Blindness. ,vol. 102, pp. 702- 724 ,(2008) , 10.1177/0145482X0810201105
Ana Cris Murillo, Jana Košecká, José Jesús Guerrero, Carlos Sagüés, Visual door detection integrating appearance and shape cues Robotics and Autonomous Systems. ,vol. 56, pp. 512- 521 ,(2008) , 10.1016/J.ROBOT.2008.03.003
N. Molton, S. Se, J.M. Brady, D. Lee, P. Probert, A stereo vision-based aid for the visually impaired Image and Vision Computing. ,vol. 16, pp. 251- 263 ,(1998) , 10.1016/S0262-8856(97)00087-5
Erik E. Stone, Marjorie Skubic, Fall Detection in Homes of Older Adults Using the Microsoft Kinect IEEE Journal of Biomedical and Health Informatics. ,vol. 19, pp. 290- 301 ,(2015) , 10.1109/JBHI.2014.2312180
YingLi Tian, Xiaodong Yang, Chucai Yi, Aries Arditi, Toward a computer vision-based wayfinding aid for blind persons to access unfamiliar indoor environments Machine Vision and Applications. ,vol. 24, pp. 521- 535 ,(2013) , 10.1007/S00138-012-0431-7
Jack M. Loomis, Andrew C. Beall, Kristen L. Macuga, Jonathan W. Kelly, Roy S. Smith, Visual Control of Action Without Retinal Optic Flow Psychological Science. ,vol. 17, pp. 214- 221 ,(2006) , 10.1111/J.1467-9280.2006.01688.X
Zaid A. Mundher, Zhong Jiaofei, A Real-Time Fall Detection System in Elderly Care Using Mobile Robot and Kinect Sensor International Journal of Materials, Mechanics and Manufacturing. ,vol. 2, pp. 133- 138 ,(2014) , 10.7763/IJMMM.2014.V2.115
A. Aladren, G. Lopez-Nicolas, Luis Puig, Josechu J. Guerrero, Navigation Assistance for the Visually Impaired Using RGB-D Sensor With Range Expansion IEEE Systems Journal. ,vol. 10, pp. 922- 932 ,(2016) , 10.1109/JSYST.2014.2320639