Critical analysis of the prediction of stress relaxation from forward creep of Type 316H austenitic stainless steel

作者: Y.Q. Wang , M.W. Spindler , C.E. Truman , D.J. Smith

DOI: 10.1016/J.MATDES.2016.01.118

关键词: Stress relaxationAustenitic stainless steelStrain hardening exponentCreepMechanicsConstitutive equationHardening (metallurgy)Data scatterDiffusion creepMetallurgyMaterials science

摘要: Abstract This work evaluates the effectiveness of using forward creep deformation laws to predict observed relaxation behaviour 316H austenitic stainless steel. A summary empirical methods, and stress experimental data were given. primary secondary strain rate (RCC-MR) model an average are combined with derived material constants a group tests at temperatures from 475 °C 600 °C. The RCC-MR predicted soundly underestimated all data. difference between relaxations hardening time versions equations small. Factors affecting predictions; including limitations in range, scatter, selection model, application discussed.

参考文章(47)
B. Chen, J. N. Hu, Y. Q. Wang, S. Kabra, A. C. F. Cocks, D. J. Smith, P. E. J. Flewitt, Internal strains between grains during creep deformation of an austenitic stainless steel Journal of Materials Science. ,vol. 50, pp. 5809- 5816 ,(2015) , 10.1007/S10853-015-9128-4
I. W. Goodall, R. A. Ainsworth, An Assessment Procedure for the High Temperature Response of Structures Creep in Structures. pp. 303- 311 ,(1991) , 10.1007/978-3-642-84455-3_35
R.J. DiMelfi, Application of a unified deformation-rate law to stress relaxation of AISI Type 316 stainless steel. [LMFBR] Transactions of the American Nuclear Society. ,vol. 45, ,(1983)
Ronald L. Lipsman, Jonathan M. Rosenberg, Brian R. Hunt, A Guide to Matlab: For Beginners and Experienced Users ,(2004)
G.V. Prasad Reddy, R. Sandhya, S. Sankaran, P. Parameswaran, K. Laha, Creep–fatigue interaction behavior of 316LN austenitic stainless steel with varying nitrogen content Materials & Design. ,vol. 88, pp. 972- 982 ,(2015) , 10.1016/J.MATDES.2015.09.007
H Wang, PD Wu, CN Tomé, Y Huang, None, A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials Journal of The Mechanics and Physics of Solids. ,vol. 58, pp. 594- 612 ,(2010) , 10.1016/J.JMPS.2010.01.004
HOLM ALTENBACH, KONSTANTIN NAUMENKO, YEVGEN GORASH, CREEP ANALYSIS FOR A WIDE STRESS RANGE BASED ON STRESS RELAXATION EXPERIMENTS International Journal of Modern Physics B. ,vol. 22, pp. 5413- 5418 ,(2008) , 10.1142/S0217979208050589