Thermal Stress Crack Stability and Propagation in Severe Thermal Environments

作者: D. P. H. Hasselman

DOI: 10.1007/978-1-4684-3141-4_7

关键词: Crack closureCeramicThermal shockModulusMaterial propertiesComposite materialBrittlenessThermal expansionFracture mechanicsMaterials science

摘要: A fracture-mechanical analysis is presented for stability criteria and propagation behavior of thermal stress cracks in brittle ceramics environments so severe that initiation cannot be avoided. It based on a mechanical model consisting rigidly constrained, uniformly cooled thin flat plate with uniform distribution microcracks; results are qualitatively similar to those obtained three-dimensional body penny-shaped cracks. High attained materials high values surface fracture energy, low expansion Young’s modulus. On catastrophic an initially short crack, the final crack subcritical has length which independent material properties but depends only initial density. suggested very shock resistance can developed by synthesizing densities microcracks.

参考文章(14)
W. D. KINGERY, Factors Affecting Thermal Stress Resistance of Ceramic Materials Journal of the American Ceramic Society. ,vol. 38, pp. 3- 15 ,(1955) , 10.1111/J.1151-2916.1955.TB14545.X
W. R. Morgan, THERMAL SHOCK EFFECT ON THE TRANSVERSE STRENGTH OF CLAY BODIES1 Journal of the American Ceramic Society. ,vol. 14, pp. 913- 923 ,(1931) , 10.1111/J.1151-2916.1931.TB16593.X
R. L. COBLE, W. D. KINGERY, Effect of Porosity on Physical Properties of Sintered Alumina Journal of the American Ceramic Society. ,vol. 39, pp. 377- 385 ,(1956) , 10.1111/J.1151-2916.1956.TB15608.X
Paul L. Gutshall, Gordon E. Gross, Observations and mechanisms of fracture in polycrystalline alumina Engineering Fracture Mechanics. ,vol. 1, pp. 463- 471 ,(1969) , 10.1016/0013-7944(69)90005-8
BERNARD SCHWARTZ, Thermal Stress Failure of Pure Refractory Oxides Journal of the American Ceramic Society. ,vol. 35, pp. 325- 333 ,(1952) , 10.1111/J.1151-2916.1952.TB13058.X
D. P. H. HASSELMAN, Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics Journal of the American Ceramic Society. ,vol. 52, pp. 600- 604 ,(1969) , 10.1111/J.1151-2916.1969.TB15848.X
D. P. H. HASSELMAN, Thermal Shock by Radiation Heating Journal of the American Ceramic Society. ,vol. 46, pp. 229- 233 ,(1963) , 10.1111/J.1151-2916.1963.TB19778.X
R. L. COBLE, W. D. KINGERY, Effect of Porosity on Thermal Stress Fracture Journal of the American Ceramic Society. ,vol. 38, pp. 33- 37 ,(1955) , 10.1111/J.1151-2916.1955.TB14549.X
C. W. Parmelee, A. E. R. Westman, THE EFFECT OF THERMAL SHOCK ON THE TRANSVERSE STRENGTH OF FIRECLAY BRICK1 Journal of the American Ceramic Society. ,vol. 11, pp. 884- 895 ,(1928) , 10.1111/J.1151-2916.1928.TB16476.X
D. P. H. HASSELMAN, Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock Journal of the American Ceramic Society. ,vol. 46, pp. 535- 540 ,(1963) , 10.1111/J.1151-2916.1963.TB14605.X