Room temperature hydrogen uptake in single walled carbon nanotubes incorporated MIL-101 doped with lithium: effect of lithium doping

作者: Prasanth Karikkethu Prabhakaran , Johnny Deschamps

DOI: 10.1007/S10934-015-0047-1

关键词: AdsorptionDopingBET theoryCarbon nanotubeHydrogen storageInorganic chemistryInductively coupled plasmaMaterials scienceLithiumHydrogen

摘要: Single walled carbon nanotubes incorporated hybrid MIL-101 (SWNT-MIL-101) was synthesised and lithium ions were doped into the framework at various Li+ concentrations. Hydrogen adsorption–desorption measurements performed 298 K up to 90 bar hydrogen uptake capacities found considerably enhanced by combined modification single doping. Lithium naphthalenide (C10H7Li) used dope SWNT-MIL-101 framework. The concentration of inside quantitatively determined inductively coupled plasma analysis. Powder X-ray diffraction studies showed that crystalline not disturbed SWNT incorporation Li BET surface area analysis N2 adsorption 77 a decrease in pore volume as increases present study MOFs nanotube followed ion doping is effective enhancing their ambient temperatures.

参考文章(40)
Manoj C. Raj, Dinesh V. Patil, K. P. Prasanth, Rajesh S. Somani, Hari Chand Bajaj, P. B. Somayajulu Rallapalli, Activated carbon @ MIL‐101(Cr): a potential metal‐organic framework composite material for hydrogen storage International Journal of Energy Research. ,vol. 37, pp. 746- 753 ,(2013) , 10.1002/ER.1933
Michael Hirscher, Barbara Panella, Barbara Schmitz, Metal-organic frameworks for hydrogen storage Microporous and Mesoporous Materials. ,vol. 129, pp. 335- 339 ,(2010) , 10.1016/J.MICROMESO.2009.06.005
Zhonghua Xiang, Zan Hu, Wantai Yang, Dapeng Cao, Lithium doping on metal-organic frameworks for enhancing H2 Storage International Journal of Hydrogen Energy. ,vol. 37, pp. 946- 950 ,(2012) , 10.1016/J.IJHYDENE.2011.03.102
Prasanth Karikkethu Prabhakaran, Johnny Deschamps, Doping activated carbon incorporated composite MIL-101 using lithium: impact on hydrogen uptake Journal of Materials Chemistry. ,vol. 3, pp. 7014- 7021 ,(2015) , 10.1039/C4TA07197B
Emmanouel Klontzas, Andreas Mavrandonakis, Emmanuel Tylianakis, George E. Froudakis, Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. Nano Letters. ,vol. 8, pp. 1572- 1576 ,(2008) , 10.1021/NL072941G
N. L. Rosi, Hydrogen Storage in Microporous Metal-Organic Frameworks Science. ,vol. 300, pp. 1127- 1129 ,(2003) , 10.1126/SCIENCE.1083440
O. I. Lebedev, F. Millange, C. Serre, G. Van Tendeloo, G. Férey, First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101 Chemistry of Materials. ,vol. 17, pp. 6525- 6527 ,(2005) , 10.1021/CM051870O
David J. Tranchemontagne, José L. Mendoza-Cortés, Michael O’Keeffe, Omar M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks Chemical Society Reviews. ,vol. 38, pp. 1257- 1283 ,(2009) , 10.1039/B817735J
O. M. Yaghi, Guangming Li, Hailian Li, Selective binding and removal of guests in a microporous metal–organic framework Nature. ,vol. 378, pp. 703- 706 ,(1995) , 10.1038/378703A0