The similarity measure of generalized fuzzy numbers based on interval distance

作者: M. Adabitabar Firozja , G.H. Fath-Tabar , Z. Eslampia

DOI: 10.1016/J.AML.2012.01.009

关键词: Metric (mathematics)Chebyshev distanceDiscrete mathematicsSimilarity measureMathematicsMinkowski distanceIntrinsic metricDistance matrixJaro–Winkler distanceFuzzy number

摘要: Abstract In this paper, we proposed a new interval distance of two fuzzy numbers that satisfy on metric properties. Also, satisfies some the other Then, used for similarity measure. Finality, tested with examples.

参考文章(23)
Phil Diamond, Hideo Tanaka, Fuzzy Regression Analysis The Handbooks of Fuzzy Sets Series. pp. 349- 387 ,(1998) , 10.1007/978-1-4615-5645-9_11
Hsuan-Shih Lee, An optimal aggregation method for fuzzy opinions of group decision systems man and cybernetics. ,vol. 3, pp. 314- 319 ,(1999) , 10.1109/ICSMC.1999.823219
S PEDERSON, M SAMBANDHAM, Numerical solution of hybrid fuzzy differential equation IVPs by a characterization theorem Information Sciences. ,vol. 179, pp. 319- 328 ,(2009) , 10.1016/J.INS.2008.09.023
Tofigh Allahviranloo, M Adabitabar Firozja, None, Ranking of fuzzy numbers by a new metric Soft Computing. ,vol. 14, pp. 773- 782 ,(2010) , 10.1007/S00500-009-0464-7
Liem Tran, Lucien Duckstein, Comparison of fuzzy numbers using a fuzzy distance measure Fuzzy Sets and Systems. ,vol. 130, pp. 331- 341 ,(2002) , 10.1016/S0165-0114(01)00195-6
Debashree Guha, Debjani Chakraborty, A new approach to fuzzy distance measure and similarity measure between two generalized fuzzy numbers Applied Soft Computing. ,vol. 10, pp. 90- 99 ,(2010) , 10.1016/J.ASOC.2009.06.009
Ching-Hsue Cheng, A new approach for ranking fuzzy numbers by distance method Fuzzy Sets and Systems. ,vol. 95, pp. 307- 317 ,(1998) , 10.1016/S0165-0114(96)00272-2
SHYI-MING CHEN, NEW METHODS FOR SUBJECTIVE MENTAL WORKLOAD ASSESSMENT AND FUZZY RISK ANALYSIS Cybernetics and Systems. ,vol. 27, pp. 449- 472 ,(1996) , 10.1080/019697296126417
P. Sevastjanov, L. Dymova, A new method for solving interval and fuzzy equations: Linear case Information Sciences. ,vol. 179, pp. 925- 937 ,(2009) , 10.1016/J.INS.2008.11.031
Luciano Stefanini, Barnabás Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations Nonlinear Analysis: Theory, Methods & Applications. ,vol. 71, pp. 1311- 1328 ,(2009) , 10.1016/J.NA.2008.12.005