Image classification with quantum pre-training and auto-encoders

作者: Sebastien Piat , Nairi Usher , Simone Severini , Mark Herbster , Tommaso Mansi

DOI: 10.1142/S0219749918400099

关键词: Artificial intelligenceImage (mathematics)Contextual image classificationField (computer science)Range (mathematics)RoboticsQuantum machine learningComputer scienceComputer visionQuantum computerMedical imaging

摘要: Computer vision has a wide range of applications from medical image analysis to robotics. Over the past few years, field been transformed by machine learning and stands benefit pote...

参考文章(10)
Geoffrey E. Hinton, A Practical Guide to Training Restricted Boltzmann Machines Neural Networks: Tricks of the Trade (2nd ed.). pp. 599- 619 ,(2012) , 10.1007/978-3-642-35289-8_32
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
T Lanting, R Harris, J Johansson, MHS Amin, AJ Berkley, S Gildert, MW Johnson, P Bunyk, E Tolkacheva, E Ladizinsky, N Ladizinsky, T Oh, I Perminov, EM Chapple, C Enderud, C Rich, B Wilson, MC Thom, S Uchaikin, G Rose, None, Cotunneling in pairs of coupled flux qubits Physical Review B. ,vol. 82, pp. 060512- ,(2010) , 10.1103/PHYSREVB.82.060512
Tadashi Kadowaki, Hidetoshi Nishimori, Quantum annealing in the transverse Ising model Physical Review E. ,vol. 58, pp. 5355- 5363 ,(1998) , 10.1103/PHYSREVE.58.5355
Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas Hamze, Neil Dickson, Richard Harris, Andrew J Berkley, Jan Johansson, Paul Bunyk, Erin M Chapple, Colin Enderud, Jeremy P Hilton, Kamran Karimi, Eric Ladizinsky, Nicolas Ladizinsky, Travis Oh, Ilya Perminov, Chris Rich, Murray C Thom, E Tolkacheva, Colin JS Truncik, Sergey Uchaikin, Jun Wang, B Wilson, Geordie Rose, Quantum annealing with manufactured spins Nature. ,vol. 473, pp. 194- 198 ,(2011) , 10.1038/NATURE10012
Yoshua Bengio, Pierre-Antoine Manzagol, Samy Bengio, Dumitru Erhan, Aaron Courville, Pascal Vincent, Why Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Research. ,vol. 11, pp. 625- 660 ,(2010)
G. E. Dahl, Dong Yu, Li Deng, A. Acero, Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition IEEE Transactions on Audio, Speech, and Language Processing. ,vol. 20, pp. 30- 42 ,(2012) , 10.1109/TASL.2011.2134090
Ashley Montanaro, Quantum algorithms: an overview npj Quantum Information. ,vol. 2, pp. 15023- ,(2016) , 10.1038/NPJQI.2015.23
Andru P. Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel de Mathelin, Nicolas Padoy, EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos IEEE Transactions on Medical Imaging. ,vol. 36, pp. 86- 97 ,(2017) , 10.1109/TMI.2016.2593957