Ruddlesden-Popper-type Nd2-xNi1-yCuyO4±δ layered oxides as candidate materials for MIEC-type ceramic membranes

作者: Bartłomiej Gędziorowski , Kacper Cichy , Anna Niemczyk , Anna Olszewska , Zijia Zhang

DOI: 10.1016/J.JEURCERAMSOC.2020.04.054

关键词: OxygenIonic conductivityMaterials scienceCrystal structureElectrical resistivity and conductivityMembraneCeramicChemical engineeringOxygen permeabilityMicrostructure

摘要: Abstract Series of Nd2-xNi1-yCuyO4±δ Ruddlesden-Popper-type oxides is obtained by auto-combustion synthesis method and systematically characterized concerning phase composition, formation solid state solution, crystal structure, oxygen content, as well regarding transport properties permeability when applied mixed conducting ceramic membranes. The A-site deficiency x discussed in terms structural stability its effect on the with ongoing modification total electrical conductivity observed. In selected Nd2-xNi0.75Cu0.25O4±δ dominating defects at high temperatures can be changed from interstitials to vacancies induced deficiency, which affects bulk- surface-related coefficients, it observed relaxation studies. optimized Nd1.9Ni0.75Cu0.25O4±δ sinters having increased ionic conductivity, fine, well-sintered microstructure allow achieve one higher reported fluxes for CO2-stable Ruddlesden-Popper-based membranes (e.g. 0.49 mL cm−2 min−1 ca. 880 °C 1.05 mm thickness).

参考文章(76)
Tatsumi Ishihara, Nuansaeng Sirikanda, Kenichi Nakashima, Shogo Miyoshi, Hiroshige Matsumoto, Mixed Oxide Ion and Hole Conductivity in Pr2 − α Ni0.76 − x Cu0.24Ga x O4 + δ Membrane Journal of The Electrochemical Society. ,vol. 157, ,(2010) , 10.1149/1.3251004
Grégory Etchegoyen, Thierry Chartier, Alain Wattiaux, Pascal Del Gallo, Mixed-Conducting Perovskite Reactor for High-Temperature Applications: Control of Microstructure and Architecture Inorganic Membranes for Energy and Environmental Applications. pp. 95- 106 ,(2009) , 10.1007/978-0-387-34526-0_6
J. F. Bringley, B. A. Scott, S. J. La Placa, T. R. McGuire, F. Mehran, M. W. McElfresh, D. E. Cox, Structure and properties of the LaCuO 3 − δ perovskites Physical Review B. ,vol. 47, pp. 15269- 15275 ,(1993) , 10.1103/PHYSREVB.47.15269
N. L. Allan, W. C. Mackrodt, Oxygen ion migration in La2CuO4 Philosophical Magazine. ,vol. 64, pp. 1129- 1132 ,(1991) , 10.1080/01418619108204884
S. J. Benson, D. Waller, J. A. Kilner, Degradation of La0.6Sr0.4Fe0.8Co0.2 O 3 − δ in Carbon Dioxide and Water Atmospheres Journal of The Electrochemical Society. ,vol. 146, pp. 1305- 1309 ,(1999) , 10.1149/1.1391762
Jian Xue, Qing Liao, Wei Chen, Henny J. M. Bouwmeester, Haihui Wang, Armin Feldhoff, A new CO2-resistant Ruddlesden–Popper oxide with superior oxygen transport: A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ Journal of Materials Chemistry. ,vol. 3, pp. 19107- 19114 ,(2015) , 10.1039/C5TA02514A
Suguru Takahashi, Shunsuke Nishimoto, Motohide Matsuda, Michihiro Miyake, Electrode Properties of the Ruddlesden–Popper Series, Lan+1NinO3n+1 (n=1, 2, and 3), as Intermediate‐Temperature Solid Oxide Fuel Cells Journal of the American Ceramic Society. ,vol. 93, pp. 2329- 2333 ,(2010) , 10.1111/J.1551-2916.2010.03743.X
E FABBRI, A DEPIFANIO, E DIBARTOLOMEO, S LICOCCIA, E TRAVERSA, Tailoring the chemical stability of Ba(Ce0.8 - xZrx)Y0.2O3 - δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) Solid State Ionics. ,vol. 179, pp. 558- 564 ,(2008) , 10.1016/J.SSI.2008.04.002
D.C. Johnston, W.R. Bayless, F. Borsa, P.C. Canfield, S-W. Cheong, J.H. Cho, F.C. Chou, Z. Fisk, J.D. Jorgensen, A. Lascialfari, L.L. Miller, P.G. Radaelli, J.E. Schirber, A.J. Schultz, D.R. Torgeson, D. Vaknin, J.L. Wagner, J. Zarestky, J. Ziolo, Phase separation and doped-hole segregation in La2CuO4+δ and La2-xSrxCuO4+δ Physica C-superconductivity and Its Applications. ,vol. 235, pp. 257- 260 ,(1994) , 10.1016/0921-4534(94)91362-5