A concept of the optimal solution of the transportation problem with fuzzy cost coefficients

作者: Stefan Chanas , Dorota Kuchta

DOI: 10.1016/0165-0114(95)00278-2

关键词: Transportation theoryParametric programmingMathematical optimizationFuzzy transportation problemFuzzy transportationFuzzy logicMathematicsFuzzy programmingMultiobjective programming

摘要: Abstract In the paper a definition of optimal solution transportation problem with fuzzy cost coefficients as well an algorithm determining this are proposed.

参考文章(11)
J. L. Verdegay, Miguel Delgado, J. Kaprzyk, M. A. Vila, Fuzzy Optimization: Recent Advances ,(1994)
Stefan Chanas, Waldemar Kołodziejczyk, Anna Machaj, A fuzzy approach to the transportation problem Fuzzy Sets and Systems. ,vol. 13, pp. 211- 221 ,(1984) , 10.1016/0165-0114(84)90057-5
Hisao Ishibuchi, Hideo Tanaka, Multiobjective programming in optimization of the interval objective function European Journal of Operational Research. ,vol. 48, pp. 219- 225 ,(1990) , 10.1016/0377-2217(90)90375-L
Gabriel R. Bitran, Linear Multiple Objective Problems with Interval Coefficients Management Science. ,vol. 26, pp. 694- 706 ,(1980) , 10.1287/MNSC.26.7.694
Stefan Chanas, Dorota Kuchta, Multiobjective programming in optimization of interval objective functions — A generalized approach European Journal of Operational Research. ,vol. 94, pp. 594- 598 ,(1996) , 10.1016/0377-2217(95)00055-0
Ralph E. Steuer, Algorithms for Linear Programming Problems with Interval Objective Function Coefficients Mathematics of Operations Research. ,vol. 6, pp. 333- 348 ,(1981) , 10.1287/MOOR.6.3.333
S. Chanas, M. Delgado, J. L. Verdegay, M. A. Vila, Interval and fuzzy extensions of classical transportation problems Transportation Planning and Technology. ,vol. 17, pp. 203- 218 ,(1993) , 10.1080/03081069308717511
Henri Prade, Didier DuBois, Fuzzy Sets and Systems: Theory and Applications ,(2011)