Short-range correlations in the three-body problem and the Faddeev equations

作者: A. Osman

DOI: 10.1016/0375-9474(70)90789-X

关键词: GaussianBinding energyRange (mathematics)Separable spaceClassical mechanicsContinuous variableMatrix (mathematics)Three-body problemPhysicsFaddeev equations

摘要: Abstract For potentials containing repulsive cores, a separable expansion for the t -matrix is developed. The resulting Faddeev equations form set of coupled in one continuous variable. three-body binding energy calculated using Gaussian and attractive parts potential.

参考文章(13)
A.N. Mitra, Three-body problem with separable potentials Nuclear Physics. ,vol. 32, pp. 529- 542 ,(1962) , 10.1016/0029-5582(62)90359-0
Steven Weinberg, Quasiparticles and the Born Series Physical Review. ,vol. 131, pp. 440- 460 ,(1963) , 10.1103/PHYSREV.131.440
T. Osborn, H. Pierre Noyes, Reduction of the Finite-Range Three-Body Problem in Two Variables Physical Review Letters. ,vol. 17, pp. 215- 218 ,(1966) , 10.1103/PHYSREVLETT.17.215
J.W. Humberston, R.L. Hall, T.A. Osborn, Bound states of three identical bosons Physics Letters B. ,vol. 27, pp. 195- 198 ,(1968) , 10.1016/0370-2693(68)90269-4
C. Lovelace, Practical Theory of Three-Particle States. I. Nonrelativistic Physical Review. ,vol. 135, pp. B1225- B1249 ,(1964) , 10.1103/PHYSREV.135.B1225
James S. Ball, David Y. Wong, SOLUTIONS OF THE FADDEEV EQUATION FOR SHORT-RANGE LOCAL POTENTIALS. Physical Review. ,vol. 169, pp. 1362- 1365 ,(1968) , 10.1103/PHYSREV.169.1362
R. D. Amado, Soluble Problems in the Scattering from Compound Systems Physical Review. ,vol. 132, pp. 485- 494 ,(1963) , 10.1103/PHYSREV.132.485