作者: Luis Barreira
DOI: 10.1007/978-3-642-28090-0_9
关键词: Hyperbolic partial differential equation 、 Hyperbolic equilibrium point 、 Mathematical analysis 、 Hyperbolic function 、 Invariant (mathematics) 、 Hyperbolic manifold 、 Hausdorff dimension 、 Hyperbolic coordinates 、 Mathematics 、 Stable manifold
摘要: We study in this chapter the dimension of hyperbolic invariant sets conformal transformations, both invertible and noninvertible. This means that derivative map along stable unstable directions is a multiple an isometry at every point. More precisely, we compute Hausdorff lower upper box dimensions repellers for dynamics. The expressed, as explicitly possible, terms topological pressure. It turns out Markov partitions are principal element proofs. In particular, they allow us to reduce effectively some arguments computations special case symbolic