Melnikov Functions and Bautin Ideal

作者: Robert Roussarie

DOI: 10.1007/BF02969382

关键词: Hamiltonian (quantum mechanics)Taylor seriesMathematicsParameter spaceMelnikov methodComputationPlanar vector fieldsVector fieldDisplacement functionMathematical analysis

摘要: The computation of the number limit cycles which appear in an analytic unfolding planar vector fields is related to decomposition displacement function this ideal functions parameter space, called Ideal Bautin. On other hand, asymptotic function, for 1-parameter unfoldings hamiltonian given by Melnikov are defined as coefficients Taylor expansion parameter. It interesting compare these two notions and study if general estimations terms Bautin could be reduced computations some subfamilies.

参考文章(10)
John Willard Milnor, Singular points of complex hypersurfaces ,(1968)
J.P Francoise, C.C Pugh, Keeping track of limit cycles Journal of Differential Equations. ,vol. 65, pp. 139- 157 ,(1986) , 10.1016/0022-0396(86)90030-6
Heisuke Hironaka, Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: I The Annals of Mathematics. ,vol. 79, pp. 109- 326 ,(1964) , 10.2307/1970486
R Roussarie, Finite cyclicity of loops and cusps Nonlinearity. ,vol. 2, pp. 73- 117 ,(1989) , 10.1088/0951-7715/2/1/006
A. M. Gabriélov, Projections of semi-analytic sets Functional Analysis and Its Applications. ,vol. 2, pp. 282- 291 ,(1968) , 10.1007/BF01075680
J.-P. Francoise, Y. Yomdin, Bernstein Inequalities and Applications to Analytic Geometry and Differential Equations Journal of Functional Analysis. ,vol. 146, pp. 185- 205 ,(1997) , 10.1006/JFAN.1996.3029
Edward Bierstone, Pierre D. Milman, Semianalytic and subanalytic sets Publications mathématiques de l'IHÉS. ,vol. 67, pp. 5- 42 ,(1988) , 10.1007/BF02699126
J. P. Francoise, Successive derivatives of a first return map, application to the study of quadratic vector fields Ergodic Theory and Dynamical Systems. ,vol. 16, pp. 87- 96 ,(1996) , 10.1017/S0143385700008725