Complexiton solutions to the Korteweg–de Vries equation

作者: Wen Xiu Ma

DOI: 10.1016/S0375-9601(02)00971-4

关键词: Bilinear formExponential functionKorteweg–de Vries equationGravitational singularityEigenfunctionEigenvalues and eigenvectorsWronskianApplied mathematicsTrigonometric functionsPhysics

摘要: A novel class of explicit exact solutions to the Korteweg–de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric …

参考文章(20)
M. Kovalyov, Basic motions of the Korteweg-De Vries equation Nonlinear Analysis-theory Methods & Applications. ,vol. 31, pp. 599- 619 ,(1998) , 10.1016/S0362-546X(97)00426-4
Wen-Xiu Ma, Benno Fuchssteiner, The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy Physics Letters A. ,vol. 213, pp. 49- 55 ,(1996) , 10.1016/0375-9601(96)00112-0
Wen-Xiu Ma, Xianguo Geng, New completely integrable Neumann systems related to the perturbation KdV hierarchy Physics Letters B. ,vol. 475, pp. 56- 62 ,(2000) , 10.1016/S0370-2693(00)00062-9
C. Au, P. C. W. Fung, A KdV soliton propagating with varying velocity Journal of Mathematical Physics. ,vol. 25, pp. 1364- 1369 ,(1984) , 10.1063/1.526305
Robert M. Miura, Clifford S. Gardner, Martin D. Kruskal, Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion Journal of Mathematical Physics. ,vol. 9, pp. 1204- 1209 ,(1968) , 10.1063/1.1664701
S. Sirianunpiboon, S.D. Howard, S.K. Roy, A note on the wronskian form of solutions of the KdV equation Physics Letters A. ,vol. 134, pp. 31- 33 ,(1988) , 10.1016/0375-9601(88)90541-5
R. S. Johnson, P. G. Drazin, Solitons: An Introduction ,(1989)