Fractional q-Difference Equations

作者: Mahmoud H. Annaby , Zeinab S. Mansour

DOI: 10.1007/978-3-642-30898-7_8

关键词: Cauchy distributionApplied mathematicsOrder (group theory)Type (model theory)Variable (mathematics)Constant (mathematics)MathematicsSpace (mathematics)Fractional calculusNonlinear system

摘要: As in the classical theory of ordinary fractional differential equations, q-difference equations order are divided into linear, nonlinear, homogeneous, and inhomogeneous with constant variable coefficients. This chapter is devoted to certain problems based on basic Riemann–Liouville derivative Caputo derivative. In this chapter, we investigate questions concerning solvability these a space functions. A special class Cauchy type q-fractional also developed at end chapter.

参考文章(236)
Sergei K. Suslov, An introduction to basic Fourier series Kluwer Academic. ,(2003) , 10.1007/978-1-4757-3731-8
Predrag Rajkovic, Sladjana Marinkovic, Miomir Stankovic, On q–Analogues of Caputo Derivative and Mittag–Leffler Function Fractional Calculus and Applied Analysis. ,vol. 10, pp. 359- 373 ,(2007)
Richard B. Paris, D. Kaminski, Asymptotics and Mellin-Barnes Integrals ,(2001)
Tilak Raj Prabhakar, A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL The Yokohama mathematical journal = 横濱市立大學紀要. D部門, 数学. ,vol. 19, pp. 7- 15 ,(1971)
Kai Diethelm, Multi-Term Caputo Fractional Differential Equations Springer, Berlin, Heidelberg. pp. 167- 186 ,(2010) , 10.1007/978-3-642-14574-2_8
W. J. Trjitzinsky, Analytic theory of linear q -difference equations Acta Mathematica. ,vol. 61, pp. 1- 38 ,(1933) , 10.1007/BF02547785
Mizan Rahman, Qazi M. Tariq, Addition formulas for $q$-Legendre-type functions Methods and Applications of Analysis. ,vol. 6, pp. 3- 20 ,(1999) , 10.4310/MAA.1999.V6.N1.A1
Martin Bohner, Allan Peterson, Dynamic Equations on Time Scales Birkhäuser Boston. ,(2001) , 10.1007/978-1-4612-0201-1
Joaquin Bustoz, Sergei K. Suslov, Basic analog of Fourier series on a $q$-quadratic grid Methods and Applications of Analysis. ,vol. 5, pp. 1- 38 ,(1998) , 10.4310/MAA.1998.V5.N1.A1