Quantum Field Theory in Terms of Random Walks and Random Surfaces

作者: Jürg Fröhlich

DOI: 10.1007/978-1-4757-0280-4_7

关键词: Quantum mechanicsQuantum walkLoop-erased random walkPhysicsQuantum field theoryTheoretical physicsImaginary timeRandom walkRandom fieldGauge theoryGaussian random field

摘要: In these notes I wish to summarize some recent developments in relativistic quantum field theory (RQFT) which have led the idea that class of RQFT Euclidean description, i.e. at imaginary time, should be viewed as classical statistical mechanics interacting random walks and surfaces. Put differently, construction many models is a problem stochastic geometry. We shall see describe fluctuations matter degrees freedom - quarks, leptons, Higgs particles while surfaces “field force”, gauge fields. More precisely, (chromo-electric) flux sheets theories confinement phase.

参考文章(73)
B. Durhuus, J. Fr�hlich, A connection between ν-dimensional Yang-Mills theory and (ν−1)-dimensional, non-linear σ-models Communications in Mathematical Physics. ,vol. 75, pp. 103- 151 ,(1980) , 10.1007/BF01222514
J.M. Drouffee, Large dimensional lattice gauge theories Nuclear Physics B. ,vol. 170, pp. 211- 227 ,(1980) , 10.1016/0550-3213(80)90148-0
M. Lüscher, K. Symanzik, P. Weisz, Anomalies of the free loop wave equation in the WKB approximation Nuclear Physics B. ,vol. 173, pp. 365- 396 ,(1980) , 10.1016/0550-3213(80)90009-7
K. Symanzik, Euclidean Quantum field theory Rend. Scu. Int. Fis. Enrico Fermi 45: 152-226(1969).. ,(1969)
A. Bovier, G. Felder, J. Fröhlich, On the critical properties of the Edwards and the self-avoiding walk model of polymer chains Nuclear Physics. ,vol. 230, pp. 119- 147 ,(1984) , 10.1016/0550-3213(84)90355-9
K. Symanzik, Small distance behaviour in field theory and power counting Communications in Mathematical Physics. ,vol. 18, pp. 227- 246 ,(1970) , 10.1007/BF01649434
Anton Bovier, Giovanni Felder, Skeleton Inequalities and the Asymptotic Nature of Perturbation Theory for Φ4-Theories in Two and Three Dimensions Communications in Mathematical Physics. ,vol. 93, pp. 259- 275 ,(1984) , 10.1007/BF01223746
Michael Aizenman, Translation invariance and instability of phase coexistence in the two dimensional Ising system. Communications in Mathematical Physics. ,vol. 73, pp. 83- 94 ,(1980) , 10.1007/BF01942696