Projektive Newton-Verfahren bei elliptischen Randwertaufgaben

作者: Kristian Witsch

DOI: 10.1007/BF01411847

关键词: Local convergenceMathematical analysisFinite element methodBoundary value problemMathematicsRitz methodNumerical analysisNewton's methodProjection methodNonlinear system

摘要: … Using subspaces of finite elements or polynominals we obtain error estimates and optimal … estimates for linear finite element approximations of quasilinear boundary value problems. …

参考文章(15)
Kristian Witsch, Konvergenzaussagen für Projektionsverfahren bei linearen Operatoren Numerische Mathematik. ,vol. 27, pp. 339- 354 ,(1976) , 10.1007/BF01396182
Kristian Witsch, Projektive Newton-Verfahren und Anwendungen auf nichtlineare Randwertaufgaben Numerische Mathematik. ,vol. 31, pp. 209- 230 ,(1978) , 10.1007/BF01397476
Kristian Witsch, Numerische Quadratur bei Projektionsverfahren Numerische Mathematik. ,vol. 30, pp. 185- 206 ,(1978) , 10.1007/BF02042944
Frank Natterer, Über die punktweise Konvergenz Finiter Elemente Numerische Mathematik. ,vol. 25, pp. 67- 77 ,(1975) , 10.1007/BF01419529
P. G. Ciarlet, M. H. Schultz, R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems Numerische Mathematik. ,vol. 13, pp. 120- 133 ,(1968) , 10.1007/BF02162155
Jim Douglas, Todd Dupont, Lars Wahlbin, The stability inLq of theL2-projection into finite element function spaces Numerische Mathematik. ,vol. 23, pp. 193- 197 ,(1974) , 10.1007/BF01400302
Jim Douglas, A Galerkin method for a nonlinear Dirichlet problem Mathematics of Computation. ,vol. 29, pp. 689- 696 ,(1975) , 10.1007/BFB0064457
J. E. Dendy, Jr., Galerkin's method for some highly nonlinear problems SIAM Journal on Numerical Analysis. ,vol. 14, pp. 327- 347 ,(1977) , 10.1137/0714021
Jens Frehse, Rolf Rannacher, Asymptotic $L^\infty $-Error Estimates for Linear Finite Element Approximations of Quasilinear Boundary Value Problems SIAM Journal on Numerical Analysis. ,vol. 15, pp. 418- 431 ,(1978) , 10.1137/0715026
Claes Johnson, Vidar Thom{ée, Error estimates for a finite element approximation of a minimal surface Mathematics of Computation. ,vol. 29, pp. 343- 349 ,(1975) , 10.1090/S0025-5718-1975-0400741-X