作者: Daniel A. Spielman , Shang-Hua Teng
DOI: 10.1137/090771430
关键词: Combinatorics 、 Inverse iteration 、 Constant (mathematics) 、 Randomized algorithm 、 Diagonally dominant matrix 、 Algorithm 、 Matrix (mathematics) 、 Time complexity 、 Mathematics 、 Condition number 、 Preconditioner
摘要: We present a randomized algorithm that on input symmetric, weakly diagonally dominant $n$-by-$n$ matrix $A$ with $m$ nonzero entries and an $n$-vector $b$ produces ${\tilde{x}} $ such $\|{\tilde{x}} - A^{\dagger} {b} \|_{A} \leq \epsilon \|A^{\dagger} {b}\|_{A}$ in expected time $O (m \log^{c}n \log (1/\epsilon))$ for some constant $c$. By applying this inside the inverse power method, we compute approximate Fiedler vectors similar amount of time. The applies subgraph preconditioners recursive fashion. These improve upon first introduced by Vaidya 1990. For any nonpositive off-diagonal $k \geq 1$, construct \log^{c} n)$ preconditioner $B$ at most $2 (n 1) + O ((m/k) \log^{39} finite generalized condition number $\kappa_{f} (A,B)$ is $k$, other I...