Nearly Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems

作者: Daniel A. Spielman , Shang-Hua Teng

DOI: 10.1137/090771430

关键词: CombinatoricsInverse iterationConstant (mathematics)Randomized algorithmDiagonally dominant matrixAlgorithmMatrix (mathematics)Time complexityMathematicsCondition numberPreconditioner

摘要: We present a randomized algorithm that on input symmetric, weakly diagonally dominant $n$-by-$n$ matrix $A$ with $m$ nonzero entries and an $n$-vector $b$ produces ${\tilde{x}} $ such $\|{\tilde{x}} - A^{\dagger} {b} \|_{A} \leq \epsilon \|A^{\dagger} {b}\|_{A}$ in expected time $O (m \log^{c}n \log (1/\epsilon))$ for some constant $c$. By applying this inside the inverse power method, we compute approximate Fiedler vectors similar amount of time. The applies subgraph preconditioners recursive fashion. These improve upon first introduced by Vaidya 1990. For any nonpositive off-diagonal $k \geq 1$, construct \log^{c} n)$ preconditioner $B$ at most $2 (n 1) + O ((m/k) \log^{39} finite generalized condition number $\kappa_{f} (A,B)$ is $k$, other I...

参考文章(57)
Virginia Vassilevska Williams, Multiplying matrices faster than coppersmith-winograd Proceedings of the 44th symposium on Theory of Computing - STOC '12. pp. 887- 898 ,(2012) , 10.1145/2213977.2214056
Daniel A. Spielman, Shang-Hua Teng, Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems symposium on the theory of computing. pp. 81- 90 ,(2004) , 10.1145/1007352.1007372
G. Strang, L. B. Freund, Introduction to applied mathematics ,(1986)
J.H. Reif, Efficient approximate solution of sparse linear systems Computers & Mathematics With Applications. ,vol. 36, pp. 37- 58 ,(1998) , 10.1016/S0898-1221(98)00191-6
Gil Shklarski, Sivan Toledo, Rigidity in Finite-Element Matrices: Sufficient Conditions for the Rigidity of Structures and Substructures SIAM Journal on Matrix Analysis and Applications. ,vol. 30, pp. 7- 40 ,(2008) , 10.1137/060650295
Ioannis Koutis, Gary L. Miller, A linear work, O(n1/6) time, parallel algorithm for solving planar Laplacians symposium on discrete algorithms. pp. 1002- 1011 ,(2007) , 10.5555/1283383.1283491
Erik G. Boman, Bruce Hendrickson, Support Theory for Preconditioning SIAM Journal on Matrix Analysis and Applications. ,vol. 25, pp. 694- 717 ,(2003) , 10.1137/S0895479801390637
Ittai Abraham, Ofer Neiman, Using petal-decompositions to build a low stretch spanning tree Proceedings of the 44th symposium on Theory of Computing - STOC '12. pp. 395- 406 ,(2012) , 10.1145/2213977.2214015
Samuel I. Daitch, Daniel A. Spielman, Faster approximate lossy generalized flow via interior point algorithms Proceedings of the fourtieth annual ACM symposium on Theory of computing - STOC 08. pp. 451- 460 ,(2008) , 10.1145/1374376.1374441