Polytopal and nonpolytopal spheres an algorithmic approach

作者: Jürgen Bokowski , Bernd Sturmfels

DOI: 10.1007/BF02766213

关键词: Discrete geometryFace (geometry)MathematicsMatroidLarge classCombinatoricsDiscrete mathematicsSPHERESSimple factPolytopeConvexity

摘要: The convexity theory for oriented matroids, first developed by Las Vergnas [17], provides the framework a new computational approach to Steinitz problem [13]. We describe an algorithm which, given combinatorial (d − 2)-sphereS withn vertices, determines setC d,n(S) of rankd matroids points and face latticeS. SinceS is polytopal if only there realizableM eC d,n(S), this method together with coordinatizability test in [10] yields decision procedure polytopality large class spheres. As main result we prove that exist 431 types neighborly 5-polytopes 10 vertices establishing coordinates 98 “doubted polytopes” classification Altshuler [1]. show alln ≧k + 5 ≧8 simplicialk-spheres which are non-polytopal due simple fact they fail be matroid On other hand, 3-sphereM 963 9 9 [2] smallest sphere, matroidk-spheres 6 ≧ 9.

参考文章(14)
Raul Cordovil, Oriented Matroids of Rank Three and Arrangements of Pseudolines Combinatorial Mathematics, Proceedings of the International Colloquium on Graph Theory and Combinatorics. ,vol. 75, pp. 219- 223 ,(1983) , 10.1016/S0304-0208(08)73390-5
Günter Ewald, Peter Kleinschmidt, Udo Pachner, Christoph Schulz, Neuere Entwicklungen in der kombinatorischen Konvexgeometrie Contributions to Geometry. pp. 131- 163 ,(1979) , 10.1007/978-3-0348-5765-9_5
A. Altshuler, J. Bokowski, L. Steinberg, The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes Discrete Mathematics. ,vol. 31, pp. 115- 124 ,(1980) , 10.1016/0012-365X(80)90029-1
Louis J. Billera, Beth Spellman Munson, Triangulations of oriented matroids and convex polytopes Siam Journal on Algebraic and Discrete Methods. ,vol. 5, pp. 515- 525 ,(1984) , 10.1137/0605050
Jürgen Bokowski, Bernd Sturmfels, On the coordinatization of oriented matroids Discrete & Computational Geometry. ,vol. 1, pp. 293- 306 ,(1986) , 10.1007/BF02187702
Jürgen Bokowski, Ido Shemer, Neighborly 6-polytopes with 10 vertices Israel Journal of Mathematics. ,vol. 58, pp. 103- 124 ,(1987) , 10.1007/BF02764673
Michel Las Vergnas, Convexity in oriented matroids Journal of Combinatorial Theory, Series B. ,vol. 29, pp. 231- 243 ,(1980) , 10.1016/0095-8956(80)90082-9
Jürgen Bokowski, Günter Ewald, Peter Kleinschmidt, On combinatorial and affine automorphisms of polytopes Israel Journal of Mathematics. ,vol. 47, pp. 123- 130 ,(1984) , 10.1007/BF02760511
P Mani, Spheres with few vertices Journal of Combinatorial Theory, Series A. ,vol. 13, pp. 346- 352 ,(1972) , 10.1016/0097-3165(72)90068-4