Energy Integral Method For Gravity Field Determination From Satellite Orbit Coordinates

作者: P. N. A. M. Visser , N. Sneeuw , C. Gerlach

DOI: 10.1007/S00190-003-0315-8

关键词: Orbit determinationSatelliteSensitivity (control systems)Mathematical analysisFocus (optics)GeodesyIterative methodGravitational fieldSpherical harmonicsPhysicsOrbit (dynamics)

摘要: A fast iterative method for gravity field determination from low Earth satellite orbit coordinates has been developed and implemented successfully. The is based on energy conservation avoids problems related to dynamics initial state. In addition, the particular geometry of a repeat exploited by using very efficient estimation scheme, in which set normal equations approximated sparse block-diagonal equivalent. Recovery experiments spherical harmonic models up degree order 80 120 were conducted 29-day simulated data coordinates. was found be flexible could easily adapted include observations non-conservative accelerations, such as (to be) provided satellites like CHAMP, GRACE, GOCE. serious drawback its large sensitivity velocity errors. Existing strategies need altered or augmented algorithms that focus optimizing accuracy estimated velocities.

参考文章(21)
William M. Kaula, Theory of satellite geodesy ,(1966)
Christopher Jekeli, THE DETERMINATION OF GRAVITATIONAL POTENTIAL DIFFERENCES FROM SATELLITE-TO-SATELLITE TRACKING Celestial Mechanics and Dynamical Astronomy. ,vol. 75, pp. 85- 101 ,(1999) , 10.1023/A:1008313405488
F. G. Lemoine, D. E. Smith, L. Kunz, R. Smith, E. C. Pavlis, N. K. Pavlis, S. M. Klosko, D. S. Chinn, M. H. Torrence, R. G. Williamson, C. M. Cox, K. E. Rachlin, Y. M. Wang, S. C. Kenyon, R. Salman, R. Trimmer, R. H. Rapp, R. S. Nerem, The Development of the NASA GSFC and NIMA Joint Geopotential Model Springer, Berlin, Heidelberg. pp. 461- 469 ,(1997) , 10.1007/978-3-662-03482-8_62
Cornelius Lanczos, The Variational Principles of Mechanics ,(1949)
William E Boyce, Richard C DiPrima, Douglas B Meade, Elementary Differential Equations and Boundary Value Problems ,(1969)
N. Sneeuw, M. van Gelderen, The polar gap LNES. ,vol. 65, pp. 559- 568 ,(1997) , 10.1007/BFB0011717
P. N. A. M. Visser, K. F. Wakker, B. A. C. Ambrosius, Global gravity field recovery from the ARISTOTELES satellite mission Journal of Geophysical Research: Solid Earth. ,vol. 99, pp. 2841- 2851 ,(1994) , 10.1029/93JB02969
C. Jekeli, R. Garcia, GPS phase accelerations for moving-base vector gravimetry Journal of Geodesy. ,vol. 71, pp. 630- 639 ,(1997) , 10.1007/S001900050130
R. Rummel, O. L. Colombo, Gravity field determination from satellite gradiometry Journal of Geodesy. ,vol. 59, pp. 233- 246 ,(1985) , 10.1007/BF02520329
Richard Biancale, Georges Balmino, Jean-Michel Lemoine, Jean-Charles Marty, Bernard Moynot, Francois Barlier, Pierre Exertier, Olivier Laurain, Pascal Gegout, Peter Schwintzer, Christoph Reigber, Albert Bode, Rolf König, Franz-Heinrich Massmann, Jean-Claude Raimondo, Roland Schmidt, Sheng Yuan Zhu, A new global Earth's gravity field model from satellite orbit perturbations: GRIM5-S1 Geophysical Research Letters. ,vol. 27, pp. 3611- 3614 ,(2000) , 10.1029/2000GL011721