Stability of ideal fcc twin boundaries

作者: T.W. Wright , N.P. Daphalapurkar , K.T. Ramesh

DOI: 10.1016/J.JMPS.2014.09.007

关键词: Molecular dynamicsCrystal twinningMathematicsCalculus of variationsContinuum mechanicsBoundary (topology)Classical mechanicsPlane (geometry)Ideal (set theory)Quality (physics)

摘要: Abstract Ideas from continuum mechanics are used to derive an elastic stability inequality for a boundary between two different materials under quasi-static, homogeneous conditions. The terms in this interpreted the case of ideal twinning plane variants face-centered cubic material. High quality potentials Ni and Cu molecular dynamics calculations calibrate relevant energies displacements near plane. It is found that comparison with direct predicts critical stress initiates movement within 1.9% 1.3% Cu. Although predicted calculated stresses only upper bounds more realistic imperfect boundary, give considerable insight into interplay lead motion.

参考文章(14)
J. D. Eshelby, Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids. pp. 82- 119 ,(1999) , 10.1007/978-3-642-59938-5_5
R. Clausius, XVI. On a mechanical theorem applicable to heat Philosophical Magazine Series 1. ,vol. 40, pp. 122- 127 ,(1870) , 10.1080/14786447008640370
Rodney Hill, Frederick Milstein, Principles of stability analysis of ideal crystals Physical Review B. ,vol. 15, pp. 3087- 3096 ,(1977) , 10.1103/PHYSREVB.15.3087
Steve Plimpton, Fast parallel algorithms for short-range molecular dynamics Journal of Computational Physics. ,vol. 117, pp. 1- 19 ,(1995) , 10.1006/JCPH.1995.1039
Y. Mishin, D. Farkas, M. J. Mehl, D. A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations Physical Review B. ,vol. 59, pp. 3393- 3407 ,(1999) , 10.1103/PHYSREVB.59.3393
F. Milstein, R. Hill, Theoretical properties of cubic crystals at arbitrary pressure—III. Stability Journal of the Mechanics and Physics of Solids. ,vol. 27, pp. 255- 279 ,(1979) , 10.1016/0022-5096(79)90004-8
R. A. Toupin, B. Bernstein, Sound Waves in Deformed Perfectly Elastic Materials. Acoustoelastic Effect The Journal of the Acoustical Society of America. ,vol. 33, pp. 216- 225 ,(1961) , 10.1121/1.1908623
Jinghan Wang, Ju Li, Sidney Yip, Simon Phillpot, Dieter Wolf, None, Mechanical instabilities of homogeneous crystals Physical Review B. ,vol. 52, pp. 12627- 12635 ,(1995) , 10.1103/PHYSREVB.52.12627