The Two-Parametric Mittag-Leffler Function

作者: Rudolf Gorenflo , Anatoly A. Kilbas , Francesco Mainardi , Sergei V. Rogosin

DOI: 10.1007/978-3-662-43930-2_4

关键词: Pure mathematicsFractional calculusMittag-Leffler functionWright Omega functionMathematicsFunction (mathematics)GeneralizationParametric statistics

摘要: In this chapter we present the basic properties of two-parametric Mittag-Leffler function E α, β (z) (see ( 1.0.3)), which is most straightforward generalization classical α 3.1.1)).

参考文章(333)
V. V. Uchaikin, Relaxation Processes and Fractional Differential Equations International Journal of Theoretical Physics. ,vol. 42, pp. 121- 134 ,(2003) , 10.1023/A:1023343508908
O. N. Repin, A. I. Saichev, Fractional Poisson Law Radiophysics and Quantum Electronics. ,vol. 43, pp. 738- 741 ,(2000) , 10.1023/A:1004890226863
Tilak Raj Prabhakar, A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL The Yokohama mathematical journal = 横濱市立大學紀要. D部門, 数学. ,vol. 19, pp. 7- 15 ,(1971)
Richard L. Magin, Fractional Calculus in Bioengineering ,(2006)
Hideki Takayasu, H. Takayasu, Fractals in the Physical Sciences ,(1990)
M.A. Al-Bassam, Some existence theorems on differential equations of generalized order. Crelle's Journal. ,vol. 218, pp. 70- 78 ,(1965)
B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals Compositio Mathematica. ,vol. 15, pp. 239- 341 ,(1964)
Elliott W. Montroll, Random walks on lattices North Carolina State University. Dept. of Statistics. ,(1969)