Hahn’s Über die Nichtarchimedischen Grössensysteme and the Development of the Modern Theory of Magnitudes and Numbers to Measure Them

作者: Philip Ehrlich

DOI: 10.1007/978-94-015-8478-4_8

关键词: Completeness (order theory)Pure mathematicsAbelian groupMathematicsMeasure (mathematics)AxiomReal numberCalculusDedekind cutIsomorphismOrdered field

摘要: The ordered field ℜ of real numbers is course up to isomorphism the unique Dedekind continuous field. Equally important, though apparently less well known, fact that also Archimedean complete, idea an complete was introduced by Hans Hahn in his celebrated investigation Uber die nichtarchimedischen Grossensysteme which presented Royal Academy Sciences Vienna 1907. It a special case more general conception abelian group, motivated by, and substantially generalizes, as admits no proper extension field; is, satisfies Hilbert’s Axiom (arithmetic) Completeness (Hilbert 1900a, p. 183; 1903a, 16).

参考文章(149)
Gregory H. Moore, Zermelo’s Axiom of Choice Studies in the History of Mathematics and Physical Sciences. ,vol. 8, ,(1982) , 10.1007/978-1-4613-9478-5
Simon Kochen, The model theory of local fields Lecture Notes in Mathematics. pp. 384- 425 ,(1975) , 10.1007/BFB0079426
Paul Finsler, Über die Grundlegung der Mengenlehre Commentarii Mathematici Helvetici. ,vol. 38, pp. 172- 218 ,(1963) , 10.1007/BF02566915
Isidore Fleischer, The Hahn embedding theorem: Analysis, refinements, proof Springer Berlin Heidelberg. pp. 278- 290 ,(1981) , 10.1007/BFB0090574
H. H. Brungs, Noncommutative Valuation Rings Springer Netherlands. pp. 105- 115 ,(1988) , 10.1007/978-94-009-2985-2_10
Gordon Fisher, Veronese’s Non-Archimedean Linear Continuum Springer Netherlands. pp. 107- 145 ,(1994) , 10.1007/978-94-015-8248-3_4
Volker Weispfenning, Quantifier elimination and decision procedures for valued fields Springer Berlin Heidelberg. pp. 419- 472 ,(1984) , 10.1007/BFB0099397
Wayne B. Powell, Constantine Tsinakis, Ordered Algebraic Structures ,(1985)
Paulo Ribenboim, Théorie des groupes ordonnés ,(1963)