Critical slowing down and nonlinear response in an exactly solvable stochastic model

作者: Th.W. Ruijgrok , J.A. Tjon

DOI: 10.1016/0031-8914(73)90065-7

关键词: Stochastic modellingStatistical physicsNonlinear systemMaster equationSpectrum (functional analysis)Stochastic matrixIsing modelMathematicsLimit (mathematics)

摘要: Abstract The master equation for a stochastic Ising model with long-range interaction is studied and the spectrum of transition matrix solved exactly in limit an infinite system. then used to illustrate critical slowing down, nonlinear response, macroscopic equations fluctuations outside equilibrium.

参考文章(22)
Roy J. Glauber, Time‐Dependent Statistics of the Ising Model Journal of Mathematical Physics. ,vol. 4, pp. 294- 307 ,(1963) , 10.1063/1.1703954
B.U. Felderhof, Note on spin relaxation of the ising chain Reports on Mathematical Physics. ,vol. 2, pp. 151- 152 ,(1971) , 10.1016/0034-4877(71)90027-9
Masuo Suzuki, Ryogo Kubo, Dynamics of the Ising Model near the Critical Point. I Journal of the Physical Society of Japan. ,vol. 24, pp. 51- 60 ,(1968) , 10.1143/JPSJ.24.51
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
Hideo Yahata, Masuo Suzuki, Critical Slowing Down in the Kinetic Ising Model Journal of the Physical Society of Japan. ,vol. 27, pp. 1421- 1438 ,(1969) , 10.1143/JPSJ.27.1421
N. G. Van Kampen, Exact Calculation of the Fluctuation Spectrum for a Nonlinear Model System Journal of Mathematical Physics. ,vol. 2, pp. 592- 601 ,(1961) , 10.1063/1.1703743
C. Kittel, H. Shore, Development of a Phase Transition for a Rigorously Solvable Many-Body System Physical Review. ,vol. 138, pp. 1165- 1169 ,(1965) , 10.1103/PHYSREV.138.A1165
Hideo Yahata, Critical Relaxation of Stochastic lsing Model Journal of the Physical Society of Japan. ,vol. 30, pp. 657- 666 ,(1971) , 10.1143/JPSJ.30.657