Iron-catalyzed oxidation of Trp residues in low-density lipoprotein.

作者: Hsin-Hung Chen , Ching-Yi Chen , Lu-Ping Chow , Chu-Huang Chen , Yuan-Teh Lee

DOI: 10.1515/BC.2011.173

关键词: In vivoApolipoprotein BChelationAscorbic acidIn vitroTryptophanChemistryBiochemistryStereochemistryLow-density lipoproteinMass spectrometry

摘要: The mechanisms of oxidation low-density lipoproteins (LDLs) are not well defined, but epidemiological and experimental studies suggest that iron-catalyzed processes may contribute to atherogenesis. aim this study was test the hypothesis oxidations LDLs in vitro produce diagnostic biomarkers apolipoprotein could be applied vivo. were oxidized presence Fe2+, EDTA, ascorbic acid for up 40 h. Following delipidation trypsin digestion, peptides separated by HPLC, with four peaks detected at 365 nm, whereas none observed from unoxidized LDLs. identified MALDI-QTOF mass spectrometry as IVQILP(W+4) EQNEQVK, IYSL(W+4)EHSTK, FEGLQE(W+4)EGK, YH(W+4)EHTGLTLR, (W+4) rather than W residues protein. gains (+4 increase m/z tryptophan, W) absorbance nm indicate kynurenines, which trypsin-releasable on surface LDL particles. All thus characterized share sequence WE. preferential WE sequences contributions C-proximate glutamate chelation iron species, thereby influencing site selectivities oxidation. These kynurenine-containing might serve iron-mediated

参考文章(48)
Marilyn Ehrenshaft, Sueli de Oliveira Silva, Irina Perdivara, Piotr Bilski, Robert H. Sik, Colin F. Chignell, Kenneth B. Tomer, Ronald P. Mason, Immunological detection of N-formylkynurenine in oxidized proteins Free Radical Biology and Medicine. ,vol. 46, pp. 1260- 1266 ,(2009) , 10.1016/J.FREERADBIOMED.2009.01.020
David Bruce, Shanlin Fu, Sharyn Armstrong, Roger T Dean, Human apo-lipoprotein B from normal plasma contains oxidised peptides The International Journal of Biochemistry & Cell Biology. ,vol. 31, pp. 1409- 1420 ,(1999) , 10.1016/S1357-2725(99)00107-7
Hermann Esterbauer, Martina Dieber-Rotheneder, Georg Waeg, Georg Striegl, Guenther Juergens, Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chemical Research in Toxicology. ,vol. 3, pp. 77- 92 ,(1990) , 10.1021/TX00014A001
Charles Vincen Smith, Correlations and apparent contradictions in assessment of oxidant stress status in vivo. Free Radical Biology and Medicine. ,vol. 10, pp. 217- 224 ,(1991) , 10.1016/0891-5849(91)90079-I
E. V. Orlova, M. B. Sherman, W. Chiu, H. Mowri, L. C. Smith, A. M. Gotto, Three-dimensional structure of low density lipoproteins by electron cryomicroscopy Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 8420- 8425 ,(1999) , 10.1073/PNAS.96.15.8420
JeromeL. Sullivan, IRON AND THE SEX DIFFERENCE IN HEART DISEASE RISK The Lancet. ,vol. 317, pp. 1293- 1294 ,(1981) , 10.1016/S0140-6736(81)92463-6
L. Ujhelyi, G. Balla, V. Jeney, Z. Varga, E. Nagy, G.M. Vercellotti, A. Agarwal, J.W. Eaton, J. Balla, Hemodialysis reduces inhibitory effect of plasma ultrafiltrate on LDL oxidation and subsequent endothelial reactions Kidney International. ,vol. 69, pp. 144- 151 ,(2006) , 10.1038/SJ.KI.5000007
Chao-Yuh Yang, Zi-Wei Gu, Hui-Xin Yang, Manlan Yang, Antonio M Gotto, Charles V Smith, Oxidative Modifications of APOB-100 by Exposure of Low Density Lipoproteins to HOCl In Vitro Free Radical Biology and Medicine. ,vol. 23, pp. 82- 89 ,(1997) , 10.1016/S0891-5849(96)00624-7
Ouliana Ziouzenkova, Alex Sevanian, Peter M. Abuja, Pilar Ramos, Hermann Esterbauer, COPPER CAN PROMOTE OXIDATION OF LDL BY MARKEDLY DIFFERENT MECHANISMS Free Radical Biology and Medicine. ,vol. 24, pp. 607- 623 ,(1998) , 10.1016/S0891-5849(97)00324-9