Genetic algorithms and neural networks generalizing the Jiles-Atherton model of static hysteresis for dynamic loops

作者: A. Salvini , F.R. Fulginei

DOI: 10.1109/20.996225

关键词: HysteresisGeneralizationMagnetic hysteresisComputer scienceArtificial neural networkJiles-Atherton modelTopologyMagnetic field

摘要: This paper presents a method based on genetic algorithms and neural networks suitable for finding the five parameters of Jiles-Atherton (JA) model generalization to dynamic hysteresis loops. The aim is obtain an equivalent static loops by updating its varying frequency imposed magnetic field H(t). Validations present approach compared other numerical approaches, adding frequency-dependent losses model, versus experimental tests will be shown.

参考文章(12)
G. Bertotti, General properties of power losses in soft ferromagnetic materials IEEE Transactions on Magnetics. ,vol. 24, pp. 621- 630 ,(1988) , 10.1109/20.43994
D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis Journal of Magnetism and Magnetic Materials. ,vol. 61, pp. 48- 60 ,(1986) , 10.1016/0304-8853(86)90066-1
D.C. Jiles, J.B. Thoelke, M.K. Devine, Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis IEEE Transactions on Magnetics. ,vol. 28, pp. 27- 35 ,(1992) , 10.1109/20.119813
L. D'Alessandro, A. Ferrero, A method for the determination of the parameters of the hysteresis model of magnetic materials IEEE Transactions on Instrumentation and Measurement. ,vol. 43, pp. 599- 605 ,(1994) , 10.1109/19.310174
L. Michaeli, A. Molinaro, A. Palumbo, Automatic and accurate evaluation of the parameters of the magnetic hysteresis model instrumentation and measurement technology conference. ,vol. 49, pp. 154- 160 ,(1998) , 10.1109/IMTC.1998.676831