作者: Antonio Bravo , R. Medina , M. Garreau , M. Bedossa , C. Toumoulin
DOI: 10.1007/978-3-540-74471-9_59
关键词: Segmentation 、 Monoplane 、 Region growing 、 Rotational angiography 、 Computer science 、 Artificial intelligence 、 Region growing algorithm 、 Computer vision 、 Unsupervised clustering 、 Linkage (software)
摘要: An unsupervised clustering framework for automatic detection of coronary vessels in bidimensional (2D) X-ray rotational angiography is reported. The proposed approach consists three consecutive steps: 1) vessel enhancement; 2) initial segmentation based on a simple linkage region growing algorithm; 3) optimization the using multiple method. Results obtained after applying this method to monoplane image sequences are presented.