A Probabilistic Background Model for Tracking

作者: J. Rittscher , J. Kato , S. Joga , A. Blake

DOI: 10.1007/3-540-45053-X_22

关键词: Filter (video)Computer scienceExpectation–maximization algorithmImportance samplingJoint Probabilistic Data Association FilterArtificial intelligenceHidden Markov modelAlgorithmComputer visionProbabilistic logicMotion estimationMarkov random fieldMarkov modelParticle filter

摘要: A new probabilistic background model based on a Hidden Markov Model is presented. The hidden states of the enable discrimination between foreground, and shadow. This functions as low level process for car tracker. particle filter employed stochastic use allows incorporation information from via importance sampling. novel observation density which models statistical dependence neighboring pixels random field effectiveness both likelihood are demonstrated.

参考文章(23)
Michael Isard, Andrew Blake, Contour Tracking by Stochastic Propagation of Conditional Density european conference on computer vision. pp. 343- 356 ,(1996) , 10.1007/BFB0015549
Dieter Koller, Joseph Weber, Jitendra Malik, Robust Multiple Car Tracking with Occlusion Reasoning european conference on computer vision. pp. 189- 196 ,(1994) , 10.1007/3-540-57956-7_22
N.J. Ferrier, S.M. Rowe, A. Blake, Real-time traffic monitoring workshop on applications of computer vision. pp. 81- 88 ,(1994) , 10.1109/ACV.1994.341292
N.K. Paragios, R. Deriche, A PDE-based level-set approach for detection and tracking of moving objects international conference on computer vision. pp. 1139- 1145 ,(1998) , 10.1109/ICCV.1998.710859
Michael Isard, Andrew Blake, ICONDENSATION: Unifying Low-Level and High-Level Tracking in a Stochastic Framework european conference on computer vision. pp. 893- 908 ,(1998) , 10.1007/BFB0055711
I. Haritaoglu, D. Harwood, L.S. Davis, W/sup 4/: Who? When? Where? What? A real time system for detecting and tracking people ieee international conference on automatic face and gesture recognition. pp. 222- 227 ,(1998) , 10.1109/AFGR.1998.670952
Stuart Geman, Donald Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-6, pp. 721- 741 ,(1984) , 10.1109/TPAMI.1984.4767596
Fabio Divino, Arnoldo Frigessi, Peter J. Green, Penalized Pseudolikelihood Inference in Spatial Interaction Models with Covariates Scandinavian Journal of Statistics. ,vol. 27, pp. 445- 458 ,(2000) , 10.1111/1467-9469.00200